File size: 8,411 Bytes
c15bdba
c208306
 
 
 
 
c15bdba
c208306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c15bdba
 
914583c
c15bdba
cc7bf2c
c15bdba
c208306
c15bdba
c208306
c15bdba
cc7bf2c
c208306
 
ee75183
 
 
 
 
 
 
 
 
 
c15bdba
cc7bf2c
c15bdba
ffb8dd9
 
 
 
 
 
 
 
 
 
 
c208306
c15bdba
c208306
c15bdba
bf3f22b
c15bdba
c208306
c15bdba
c208306
 
 
c15bdba
c208306
 
 
 
 
 
c15bdba
c208306
 
 
 
c15bdba
c208306
 
 
 
c15bdba
c208306
 
 
 
 
 
 
 
 
 
 
c15bdba
 
b120b50
c208306
c15bdba
b120b50
c208306
c15bdba
c208306
c15bdba
c208306
b120b50
c15bdba
c208306
b120b50
 
 
 
 
 
 
 
 
 
 
 
c208306
 
c15bdba
c208306
c15bdba
cee4ec0
c15bdba
cee4ec0
 
 
 
cc7bf2c
cee4ec0
cc7bf2c
c15bdba
 
 
c208306
c15bdba
cc7bf2c
c208306
 
 
 
 
 
 
c15bdba
c208306
c15bdba
c208306
c15bdba
c208306
c15bdba
c208306
 
 
c2ae1a5
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
pipeline_tag: text-generation
base_model: bigcode/starcoder2-15b
datasets:
- bigcode/self-oss-instruct-sc2-exec-filter-50k
license: bigcode-openrail-m
library_name: transformers
tags:
- code
model-index:
- name: starcoder2-15b-instruct-v0.1
  results:
  - task:
      type: text-generation
    dataset:
      name: LiveCodeBench (code generation)
      type: livecodebench-codegeneration
    metrics:
    - type: pass@1
      value: 20.4
  - task:
      type: text-generation
    dataset:
      name: LiveCodeBench (self repair)
      type: livecodebench-selfrepair
    metrics:
    - type: pass@1
      value: 20.9
  - task:
      type: text-generation
    dataset:
      name: LiveCodeBench (test output prediction)
      type: livecodebench-testoutputprediction
    metrics:
    - type: pass@1
      value: 29.8
  - task:
      type: text-generation
    dataset:
      name: LiveCodeBench (code execution)
      type: livecodebench-codeexecution
    metrics:
    - type: pass@1
      value: 28.1
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: humaneval
    metrics:
    - type: pass@1
      value: 72.6
  - task:
      type: text-generation
    dataset:
      name: HumanEval+
      type: humanevalplus
    metrics:
    - type: pass@1
      value: 63.4
  - task:
      type: text-generation
    dataset:
      name: MBPP
      type: mbpp
    metrics:
    - type: pass@1
      value: 75.2
  - task:
      type: text-generation
    dataset:
      name: MBPP+
      type: mbppplus
    metrics:
    - type: pass@1
      value: 61.2
  - task:
      type: text-generation
    dataset:
      name: DS-1000
      type: ds-1000
    metrics:
    - type: pass@1
      value: 40.6
---

# StarCoder2-Instruct: Fully Transparent and Permissive Self-Alignment for Code Generation

![Banner](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/banner.png)

## Model Summary

We introduce StarCoder2-15B-Instruct-v0.1, the very first entirely self-aligned code Large Language Model (LLM) trained with a fully permissive and transparent pipeline. Our open-source pipeline uses StarCoder2-15B to generate thousands of instruction-response pairs, which are then used to fine-tune StarCoder-15B itself without any human annotations or distilled data from huge and proprietary LLMs.

- **Model:** [bigcode/starcoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-instruct-15b-v0.1)
- **Code:** [bigcode-project/starcoder2-self-align](https://github.com/bigcode-project/starcoder2-self-align)
- **Dataset:** [bigcode/self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k/)
- **Authors:**
[Yuxiang Wei](https://yuxiang.cs.illinois.edu),
[Federico Cassano](https://federico.codes/),
[Jiawei Liu](https://jw-liu.xyz),
[Yifeng Ding](https://yifeng-ding.com),
[Naman Jain](https://naman-ntc.github.io),
[Harm de Vries](https://www.harmdevries.com),
[Leandro von Werra](https://twitter.com/lvwerra),
[Arjun Guha](https://www.khoury.northeastern.edu/home/arjunguha/main/home/),
[Lingming Zhang](https://lingming.cs.illinois.edu).

![self-alignment pipeline](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/method.png)

## Citation

```bibtex
@article{wei2024selfcodealign,
  title={SelfCodeAlign: Self-Alignment for Code Generation}, 
  author={Yuxiang Wei and Federico Cassano and Jiawei Liu and Yifeng Ding and Naman Jain and Zachary Mueller and Harm de Vries and Leandro von Werra and Arjun Guha and Lingming Zhang},
  year={2024},
  journal={arXiv preprint arXiv:2410.24198}
}
```

## Use

### Intended use

The model is designed to respond to **coding-related instructions in a single turn**. Instructions in other styles may result in less accurate responses.

Here is an example to get started with the model using the [transformers](https://huggingface.co/docs/transformers/index) library:

```python
import transformers
import torch

pipeline = transformers.pipeline(
    model="bigcode/starcoder2-15b-instruct-v0.1",
    task="text-generation",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

def respond(instruction: str, response_prefix: str) -> str:
    messages = [{"role": "user", "content": instruction}]
    prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False)
    prompt += response_prefix

    teminators = [
        pipeline.tokenizer.eos_token_id,
        pipeline.tokenizer.convert_tokens_to_ids("###"),
    ]

    result = pipeline(
        prompt,
        max_length=256,
        num_return_sequences=1,
        do_sample=False,
        eos_token_id=teminators,
        pad_token_id=pipeline.tokenizer.eos_token_id,
        truncation=True,
    )
    response = response_prefix + result[0]["generated_text"][len(prompt) :].split("###")[0].rstrip()
    return response


instruction = "Write a quicksort function in Python with type hints and a 'less_than' parameter for custom sorting criteria."
response_prefix = ""

print(respond(instruction, response_prefix))
```

Here is the expected output:

``````
Here's how you can implement a quicksort function in Python with type hints and a 'less_than' parameter for custom sorting criteria:

```python
from typing import TypeVar, Callable

T = TypeVar('T')

def quicksort(items: list[T], less_than: Callable[[T, T], bool] = lambda x, y: x < y) -> list[T]:
    if len(items) <= 1:
        return items

    pivot = items[0]
    less = [x for x in items[1:] if less_than(x, pivot)]
    greater = [x for x in items[1:] if not less_than(x, pivot)]
    return quicksort(less, less_than) + [pivot] + quicksort(greater, less_than)
```
``````

### Bias, Risks, and Limitations

StarCoder2-15B-Instruct-v0.1 is primarily finetuned for Python code generation tasks that can be verified through execution, which may lead to certain biases and limitations. For example, the model might not adhere strictly to instructions that dictate the output format. In these situations, it's beneficial to provide a **response prefix** or a **one-shot example** to steer the model’s output. Additionally, the model may have limitations with other programming languages and out-of-domain coding tasks.

The model also inherits the bias, risks, and limitations from its base StarCoder2-15B model. For more information, please refer to the [StarCoder2-15B model card](https://huggingface.co/bigcode/starcoder2-15b).

## Evaluation on EvalPlus, LiveCodeBench, and DS-1000

![EvalPlus](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/evalplus.png)

![LiveCodeBench and DS-1000](https://huggingface.co/datasets/bigcode/starcoder2-instruct-assets/resolve/main/lcb-ds1000.png)

## Training Details

### Hyperparameters

- **Optimizer:** Adafactor
- **Learning rate:** 1e-5
- **Epoch:** 4
- **Batch size:** 64
- **Warmup ratio:** 0.05
- **Scheduler:** Linear
- **Sequence length:** 1280
- **Dropout**: Not applied

### Hardware

1 x NVIDIA A100 80GB

## Resources

- **Model:** [bigcode/starCoder2-15b-instruct-v0.1](https://huggingface.co/bigcode/starcoder2-instruct-15b-v0.1)
- **Code:** [bigcode-project/starcoder2-self-align](https://github.com/bigcode-project/starcoder2-self-align)
- **Dataset:** [bigcode/self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k/)

### Full Data Pipeline

Our dataset generation pipeline has several steps. We provide intermediate datasets for every step of the pipeline:
1. Original seed dataset filtered from The Stack v1: https://huggingface.co/datasets/bigcode/python-stack-v1-functions-filtered
2. Seed dataset filtered using StarCoder2-15B as a judge for removing items with bad docstrings: https://huggingface.co/datasets/bigcode/python-stack-v1-functions-filtered-sc2
3. seed -> concepts: https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-concepts
4. concepts -> instructions: https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-instructions
5. instructions -> response: https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-responses-unfiltered
6. Responses filtered by executing them: https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-500k-raw
7. Executed responses filtered by deduplicating them (final dataset): https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k