--- license: creativeml-openrail-m base_model: "stabilityai/stable-diffusion-3-medium-diffusers" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora - template:sd-lora inference: true widget: - text: 'a studio portrait photograph of emma watson. she looks relaxed and happy.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png --- # sd3-lora-celebrities This is a LoRA derived from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers). The main validation prompt used during training was: ``` a studio portrait photograph of emma watson. she looks relaxed and happy. ``` ## Validation settings - CFG: `5.0` - CFG Rescale: `0.2` - Steps: `50` - Sampler: `euler` - Seed: `2` - Resolution: `1280x768` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 5 - Training steps: 9200 - Learning rate: 0.0001 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: v_prediction - Rescaled betas zero SNR: True - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Not used - LoRA Rank: 16 - LoRA Alpha: 16 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### celebrities-sd3 - Repeats: 0 - Total number of images: 1830 - Total number of aspect buckets: 2 - Resolution: 0.5 megapixels - Cropped: False - Crop style: None - Crop aspect: None ## Inference ```python import torch from diffusers import StableDiffusion3Pipeline model_id = "sd3-lora-celebrities" prompt = "a studio portrait photograph of emma watson. she looks relaxed and happy." negative_prompt = "malformed, disgusting, overexposed, washed-out" pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=50, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=5.0, guidance_rescale=0.2, ).images[0] image.save("output.png", format="PNG") ```