Hugging Face's logo Hugging Face Search models, datasets, users... Models Datasets Spaces Posts Docs Enterprise Pricing beyoru / MCQ-o1-1 like 0 Text Generation Transformers PyTorch beyoru/Tin_hoc_mcq English Vietnamese qwen2 text-generation-inference trl sft conversational Inference Endpoints License: apache-2.0 Model card Files and versions Community Settings MCQ-o1-1/ README.md Metadata UI license datasets + Add Datasets language + Add Languages metrics + Add Metrics base_model + Add Base Model new_version + Add New Version pipeline_tag Auto-detected library_name + Add Library tags + Add Tags Eval Results View doc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 ⌄ ⌄ ⌄ ⌄ ⌄ ⌄ ⌄ ⌄ ⌄ --- base_model: - Qwen/Qwen2.5-3B-Instruct tags: - text-generation-inference - transformers - qwen2 - trl - sft license: apache-2.0 language: - en - vi datasets: - beyoru/Tin_hoc_mcq --- # Uploaded model - **Developed by:** beyoru - **License:** apache-2.0 # Usage ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "beyoru/MCQ-3B-o1-1" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [ {"role": "system", "content": "Tạo một câu hỏi trắc nghiệm về"}, {"role": "user", "content": ""} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, do_sample=True ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` # Notes: - For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on q,v base on LoRA paper. - Fine-tuned lora with rank = 8 and alpha = 16, epoch = 1, linear (optim) - DoRA Commit directly to the main branch Open as a pull request to the main branch Commit changes Update README.md Add an extended description... Upload images, audio, and videos by dragging in the text input, pasting, or clicking here.