---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: local_compartment_classifier_bd_boxes.skops
widget:
- structuredData:
area_nm2:
- 693824.0
- 4852608.0
- 17088896.0
area_nm2_neighbor_mean:
- 10181485.714285716
- 9884429.714285716
- 9010409.142857144
area_nm2_neighbor_std:
- 8312409.263207569
- 8587259.418816902
- 8418630.640116522
max_dt_nm:
- 69.0
- 543.0
- 1287.0
max_dt_nm_neighbor_mean:
- 664.7142857142857
- 630.8571428571429
- 577.7142857142857
max_dt_nm_neighbor_std:
- 479.64240342658945
- 504.9563358340017
- 468.41868657651344
mean_dt_nm:
- 24.4375
- 156.5
- 416.0
mean_dt_nm_neighbor_mean:
- 198.62946428571428
- 189.19642857142856
- 170.66071428571428
mean_dt_nm_neighbor_std:
- 150.614304054458
- 157.4368957825056
- 143.32375093543624
pca_ratio_01:
- 1.3849340770961909
- 1.181656878273399
- 1.128046800200765
pca_ratio_01_neighbor_mean:
- 1.8575624906424115
- 1.8760422359899387
- 1.880915879451087
pca_ratio_01_neighbor_std:
- 0.641580757345606
- 0.6228187048854344
- 0.6165585104590592
pca_unwrapped_0:
- -0.0046539306640625
- -0.497314453125
- -0.258544921875
pca_unwrapped_0_neighbor_mean:
- 0.039224624633789
- 0.0840119448575106
- 0.0623056238347833
pca_unwrapped_0_neighbor_std:
- 0.3114910605258688
- 0.2573427692683507
- 0.296254177168357
pca_unwrapped_1:
- 0.7392578125
- -0.11553955078125
- 0.2169189453125
pca_unwrapped_1_neighbor_mean:
- 0.0941687497225674
- 0.1718776009299538
- 0.1416541012850674
pca_unwrapped_1_neighbor_std:
- 0.3179467337379631
- 0.3628551035117971
- 0.372447324946889
pca_unwrapped_2:
- -0.673828125
- -0.85986328125
- 0.94140625
pca_unwrapped_2_neighbor_mean:
- 0.2258744673295454
- 0.2427867542613636
- 0.0790349786931818
pca_unwrapped_2_neighbor_std:
- 0.9134250264562896
- 0.8928014788058292
- 0.9167197839332804
pca_unwrapped_3:
- -0.0302886962890625
- -0.86572265625
- 0.57177734375
pca_unwrapped_3_neighbor_mean:
- -0.2933238636363636
- -0.2173753218217329
- -0.3480571400035511
pca_unwrapped_3_neighbor_std:
- 0.6203425764161097
- 0.5938304683645145
- 0.5600074530240728
pca_unwrapped_4:
- 0.67333984375
- -0.0005474090576171
- 0.81982421875
pca_unwrapped_4_neighbor_mean:
- 0.2915762121027166
- 0.3528386896306818
- 0.2782594507390802
pca_unwrapped_4_neighbor_std:
- 0.6415192812587974
- 0.6430080201673403
- 0.6308895861182334
pca_unwrapped_5:
- 0.73876953125
- 0.50048828125
- -0.03192138671875
pca_unwrapped_5_neighbor_mean:
- 0.2028697620738636
- 0.2245316938920454
- 0.2729325727982954
pca_unwrapped_5_neighbor_std:
- 0.265173781606759
- 0.2994363858938455
- 0.2968562365279343
pca_unwrapped_6:
- 0.99951171875
- 0.05828857421875
- -0.77880859375
pca_unwrapped_6_neighbor_mean:
- -0.2386505820534446
- -0.1530848416415128
- -0.0769850990988991
pca_unwrapped_6_neighbor_std:
- 0.6776577717043619
- 0.7717860533115238
- 0.7447135522384378
pca_unwrapped_7:
- 0.023834228515625
- -0.9931640625
- 0.52978515625
pca_unwrapped_7_neighbor_mean:
- -0.4803272594105113
- -0.3878728693181818
- -0.5263227982954546
pca_unwrapped_7_neighbor_std:
- 0.4799926318285017
- 0.4691567465869561
- 0.3891669942534205
pca_unwrapped_8:
- 0.0192413330078125
- 0.0997314453125
- -0.3359375
pca_unwrapped_8_neighbor_mean:
- -0.0384375832297585
- -0.0457548661665482
- -0.0061485984108664
pca_unwrapped_8_neighbor_std:
- 0.3037878488292577
- 0.3010843368506175
- 0.2874409267860334
pca_val_unwrapped_0:
- 15657.09765625
- 40668.40625
- 66863.0
pca_val_unwrapped_0_neighbor_mean:
- 69378.52059659091
- 67104.76526988637
- 64723.43856534091
pca_val_unwrapped_0_neighbor_std:
- 20242.245019019712
- 24702.906417865197
- 25959.16138296664
pca_val_unwrapped_1:
- 11305.3017578125
- 34416.42578125
- 59273.25
pca_val_unwrapped_1_neighbor_mean:
- 41190.40261008523
- 39089.39133522727
- 36829.68004261364
pca_val_unwrapped_1_neighbor_std:
- 16625.870141811894
- 18875.56976212627
- 17666.778281657556
pca_val_unwrapped_2:
- 1270.4095458984375
- 13551.6748046875
- 47764.625
pca_val_unwrapped_2_neighbor_mean:
- 28717.50048828125
- 27601.021828391335
- 24490.75362881747
pca_val_unwrapped_2_neighbor_std:
- 14988.204981576571
- 16601.48080038032
- 15622.078784778376
post_synapse_count:
- 0.0
- 0.0
- 0.0
post_synapse_count_neighbor_mean:
- 0.0
- 0.0
- 0.0
post_synapse_count_neighbor_std:
- 0.0
- 0.0
- 0.0
pre_synapse_count:
- 0.0
- 0.0
- 0.0
pre_synapse_count_neighbor_mean:
- 0.0
- 0.0
- 0.0
pre_synapse_count_neighbor_std:
- 0.0
- 0.0
- 0.0
size_nm3:
- 12771840.0
- 697943040.0
- 7550330880.0
size_nm3_neighbor_mean:
- 3233702034.285714
- 3184761234.285714
- 2695304960.0
size_nm3_neighbor_std:
- 3650678969.7909584
- 3691650923.5639486
- 3518520747.0511127
---
# Model description
This is a model trained to classify pieces of neuron as axon, dendrite, soma, or glia,
based only on their local shape and synapse features.The model is a linear discriminant
classifier which was trained on compartment labels generated by Bethanny Danskin for
3 6x6x6 um boxes in the Minnie65 Phase3 dataset.
## Intended uses & limitations
This model could be used to predict some compartment labels in mouse cortical
connectomes, but it is unclear to what extent this model will generalize.
## Training Procedure
The model was trained on local (level 2 cache) and synapse count features from 3 6x6x6
um boxes in the Minnie65 Phase3 dataset. These features were also locally aggregated in
5-hop neighborhood windows and concatenated to each level 2 node's features. The labels
were generated by Bethanny Danskin and include axon, dendrite, soma, and glia
compartments. The classification model was trained using a linear discriminant
classifier.
### Hyperparameters
Click to expand
| Hyperparameter | Value |
| ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------- |
| memory | |
| steps | [('transformer', QuantileTransformer(output_distribution='normal')), ('lda', LinearDiscriminantAnalysis(n_components=3))] |
| verbose | False |
| transformer | QuantileTransformer(output_distribution='normal') |
| lda | LinearDiscriminantAnalysis(n_components=3) |
| transformer\_\_copy | True |
| transformer\_\_ignore_implicit_zeros | False |
| transformer\_\_n_quantiles | 1000 |
| transformer\_\_output_distribution | normal |
| transformer\_\_random_state | |
| transformer\_\_subsample | 10000 |
| lda\_\_covariance_estimator | |
| lda\_\_n_components | 3 |
| lda\_\_priors | |
| lda\_\_shrinkage | |
| lda\_\_solver | svd |
| lda\_\_store_covariance | False |
| lda\_\_tol | 0.0001 |
Pipeline(steps=[('transformer',QuantileTransformer(output_distribution='normal')),('lda', LinearDiscriminantAnalysis(n_components=3))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('transformer',QuantileTransformer(output_distribution='normal')),('lda', LinearDiscriminantAnalysis(n_components=3))])
QuantileTransformer(output_distribution='normal')
LinearDiscriminantAnalysis(n_components=3)