File size: 46,811 Bytes
7bc0867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
---
base_model: sentence-transformers/all-MiniLM-L6-v2
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4820
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: "Defense \n11 January 2024 ATP 3-21.8 5-57\n Reaction to enemy\
    \ fires (for example, artillery and/or aviation) and CBRN\nattacks.\n Reports\
    \ to higher, monitoring stockage levels, and cross leveling or resupply.\n CASEVAC\
    \ and MEDEVAC procedures.\n Criteria to commitment the reserve.\nFigure 5-13.\
    \ Main battle area (platoon engagements), example \nFOLLOW THROUGH \n5-167. During\
    \ the planning for the defensive operation, the platoon leader must discern \n\
    from the company OPORD what the potential follow-on missions are and begin to\
    \ plan\nhow to achieve them. During this planning , the leader determines the\
    \ possible timeline\nand location for defeat in detail , consolidate, reorganize,\
    \ and transition which best\nf\nacilitates future operations and provides adequate\
    \ protection."
  sentences:
  - What are some methods for distributing fires effectively in a platoon?
  - What should I consider when selecting battle positions for my unit?
  - What key factors are involved in planning for a defense scenario?
- source_sentence: "Chapter 6 \n6-24 ATP 3-21.8 11 January 2024 \nFigure 6-7. Movement\
    \ to maneuver \nTERRAIN \n6-67. Platoon and squads enhance their own security\
    \ during movement using covered\nand concealed terrain ; the use of the appropriate\
    \ movement formation and movement\ntechnique; the actions taken to secure danger\
    \ areas during crossing ; the enforcement of\nnoise, light, and emissions control\
    \ (for example, thermal and electronic) discipline; and\nus\ne of proper individual\
    \ camouflage techniques. When planning and preparing for\nmovement, leaders must\
    \ consider how terrain affects security while simultaneously\nconsidering METT-TC\
    \ (I). Some missions may require the platoon or individual squad\nto move on other\
    \ than covered and concealed routes. While leaders may not be able t o\npr\nevent\
    \ the unit ’s detection, they can ensure it moves on the battlefield in a time\
    \ a nd\npl\nace for which the enemy is unprepared. Particularly when moving in\
    \ the open, leaders\nmust avoid predictability and continue to use terrain to\
    \ their advantage.\nEXECUTION \n6-68. During execution, leaders enforce camouflage\
    \ discipline (Soldiers and their\nequipment). Leaders ensure the camouflage used\
    \ by their Soldiers is appropriate to the\nterrain and season. Platoon standard\
    \ operating procedures ( SOPs) specify elements of\ncamouflage, noise and light\
    \ discipline and emissions control; security halts; and actions\nat security halts.\n\
    CAMOUFLAGE, NOISE, AND LIGHT DISCIPLINE AND EMISSIONS CONTROL \n6-69. The platoon\
    \ is visible to enemy forces and target acquisition capabilities on every\nspectrum,\
    \ including visible light, sound, and across the electromagnetic spectrum. The"
  sentences:
  - What is the process for preparing a machine gun range card?
  - How does terrain impact the security of a platoon during movement?
  - What’s the practical rate of fire for the M3 MAAWS?
- source_sentence: "Machine Gun Employment and Theory \n11 January 2024 ATP 3-21.8\
    \ C-35\nSECURITY \nC-115. Security includes all command measures to protect against\
    \ surprise ,\nobservation, and annoyance by the enemy. The gun team is responsible\
    \ for its immediate \nlocal security, specifically provided by the assistant gunner\
    \ and/or ammunition bearer\nfor close in local security to the gunner, who is\
    \ fixated on deeper targets. Though the\nprincipal unit security measures against\
    \ ground forces include employment of\nobservation posts, security patrols, and\
    \ detachments covering the front flanks and rear\nof the unit’s most valuable\
    \ weapons systems and vulnerable areas. The composition and\nstrength of these\
    \ detachments depends on the size of the main body, its mission, and\nna\nture\
    \ of the opposition expected. The presence of machine guns with security\ndetachments\
    \ augments their firepower to delay, attack, and defend, by virtue of inherent\n\
    firepower.\nC-116. The potential of air and ground attacks on the unit demands\
    \ every possible\nprecaution for maximum security while on the move. Where this\
    \ situation exists , the\nmachine gun crew must be thoroughly trained in the hasty\
    \ delivery of antiaircraft fire\nand of counterfire against enemy ground forces.\
    \ The distribution of the medium machine \nguns in the formation is critical.\
    \ The medium machine gun crew is constantly on the\nalert, particularly at halts\
    \ , ready to deliver fire as soon as possible. If leaders expect a\nhalt to exceed\
    \ a brief period , they carefully choose medium machine gun positions to\navoid\
    \ unduly tiring the medium machine gun crew. If they expect the halt to extend\
    \ for\na long period, they can have the medium machine gun crew take up positions\
    \ in support\nof the unit. The crew covers the direction from which they expect\
    \ enemy activity as well\nas the direction from which the unit came. Leaders select\
    \ positions permitting the\ndelivery of fire in the most probable direction of\
    \ enemy attack, such as valleys, draws,\nridges, and spurs. They choose positions\
    \ offering obstructed fire from potential enemy\nlocations.\nEMPLOYMENT OF FIRE\
    \ AND MOVEMENT \nC-117. The employment of fire and movement is essential and greatly\
    \ depends upon\nthe other during maneuver. Without the support of covering fires\
    \ , maneuvering in the\npresence of enemy fire can result in disastrous losses.\
    \ Covering fires , especially\nproviding fire superiority, allow maneuvering in\
    \ the offense. However , fire superiority\nalone rarely wins battles. The primary\
    \ objective of the offense is to advance , occupy,\nand hold the enemy position.\n\
    Machine Gun as a Base of Fire \nC-118. Machine gun fire from a support by fire\
    \ position must be the minimum possible\nto keep the enemy from returning fire.\
    \ Ammunition must be conserved so the guns do\nnot run out of ammunition.\nC-119.\
    \ The weapons squad leader positions and controls the fires of all medium\nmachine\
    \ guns in the element. Machine gun targets include essential enemy weapons or\n\
    groups of enemy targets either on the objective or attempting to reinforce or\n\
    counterattack. In terms of engagement ranges, medium machine guns in the base-of-fire"
  sentences:
  - How do observation posts aid in machine gun unit security?
  - Why would a unit choose to defend on a reverse slope rather than a forward slope?
  - What does the publication say about engagement area development for defense?
- source_sentence: "Chapter 7 \n7-18 ATP 3-21.8 11 January 2024 \nThe PACE plan is\
    \ a communication plan that exists for a specific mission or task, not a \nspecific\
    \ unit, as the plan considers both intra- and inter-unit sharing of information.\
    \ The \nPACE plan designates the order in which an element will move through available\
    \ \ncommunications systems until contact can be established with the desired distant\
    \ \nelement.  \nCHALLENGE AND PASSWORD OUTSIDE OF FRIENDLY LINES \n7-61. The challenge\
    \ and password from the signal operating instructions must not be\nused when the\
    \ patrol is outside friendly lines. The unit ’s tactical SOP should state the\n\
    procedure for establishing a patrol challenge and password as well as other combat\n\
    identification features and patrol markings. Two methods for establishing a challenge\n\
    and password are the odd number system and running password.\nOdd Number System\
    \ \n7-62. The leader specifies an odd number. The challenge can be any number\
    \ less than\nthe specified number. The password will be the number that must be\
    \ added to it to equal\nthe specified number, for example, the number is 9, the\
    \ challenge is 4, and the password\nis 5.\nRunning Password \n7-63. Signal operating\
    \ instructions also may designate a running password. This code\nword alerts a\
    \ unit that friendly are approaching in a less than organized manner and\npossibly\
    \ under pressure. The number of friendly approaching follows the running\npassword.\
    \ For example, if the running password is “eagle,” and seven friendl ies are\n\
    a\npproaching, they would say “eagle seven.”\nLOCATIONS OF KEY LEADERS \n7-64.\
    \ The patrol leader considers where best to locate throughout each phase of the\n\
    patrol, and where to locate the APL , and other essential leaders for each phase\
    \ of the\npatrol. The APL normally is with the following elements for each type\
    \ of patrol:\n On a raid or ambush, the APL can be with the patrol leader on\
    \ the objective\nor control the support element from the support position.\n\
    \ On an area reconnaissance, the APL can move with one of the area\nreconnaissance\
    \ elements or supervise security in the ORP.\n On a zone reconnaissance, the\
    \ APL can move with one of the zone\nreconnaissance elements or move with the\
    \ reconnaissance element setting up\nthe linkup point.\nACTIONS ON CHANCE CONTACT\
    \ \n7-65. The leader ’s plan must address actions on chance contact at each phase\
    \ of the\npatrol. (See paragraphs 2-48 to 2-52 for additional information on actions\
    \ on contact.)\nFor the patrol’s mission the plan must address—"
  sentences:
  - How does a platoon deal with obstacles during an assault?
  - What are some methods for setting up a challenge and password in the field?
  - What is the purpose of having one squad engage while others observe in an observed
    fire scenario?
- source_sentence: "Offense \n11 January 2024 ATP 3-21.8 4-61\nlight the target, making\
    \ it easier to acquire effectively. Leaders and Soldiers \nuse the infrared devices\
    \ to identify enemy or friendly personnel and then \nengage targets using their\
    \ aiming lights. \n4-172. Illuminating rounds fired to burn on the ground can\
    \ mark objectives. This helps\nthe platoon orient on the objective but may adversely\
    \ affect night vision devices.\n4-173. Leaders plan but do not always use illumination\
    \ during limited visibility\nattacks. Battalion commanders normally control conventional\
    \ illumination but ma y\na\nuthorize the company commander to do so. If the commander\
    \ decides to use\nconventional illumination , the commander should not call for\
    \ it until the assault is\ninitiated or the attack is detected. It should be placed\
    \ on several locations over a wide\narea to confuse the enemy as to the exact\
    \ place of the attack. It should be placed beyond\nthe objective to help assaulting\
    \ Soldiers see and fire at withdrawing or counterattacking\nenemy Soldiers. Infrared\
    \ illumination is a good capability to light the objective without\nlighting it\
    \ for enemy forces without night vision devices.  This advantage is degraded\n\
    when used against a peer threat with the same night vision capabilities.\n4-174.\
    \ The platoon leader , squad leaders , and vehicle commanders must know unit\n\
    tactical SOP and develop sound COAs to synchronize the employment of infrared\n\
    illumination devices , target designators , and aiming lights during their assault\
    \ on the\nobjective. These include using luminous tape or chemical lights to mark\
    \ personnel and\nusing weapons control restrictions.\n4-175. The platoon leader\
    \ may use the following techniques to increase control during\nthe assault:\n\
     Use no flares, grenades, or obscuration on the objective.\n Use mortar or artillery\
    \ rounds to orient attacking units.\n Use a base squad or fire team to pace and\
    \ guide others.\n Reduce intervals between Soldiers and squads.\n4-176. Like\
    \ a daylight attack , indirect and direct fires are planned for a limited\nvisibility\
    \ attack but are not executed unless the platoon is detected or is ready to assault.\n\
    Some weapons may fire before the attack and maintain a pattern to deceive the\
    \ enemy\nor to help cover noise ma de by the platoon ’s movement. This is not\
    \ done if it will\ndisclose the attack.\n4-177. Obscuration further reduces the\
    \ enemy’s visibility, particularly if the enemy has\nnight vision devices. The\
    \ FO fires obscuration rounds close to or on enemy positions ,\nso it does not\
    \ restrict friendly movement or hinder the reduction of obstacles. Employing \n\
    obscuration on the objective during the assault may make it hard for assaulting\
    \ Soldiers\nto find enemy fighting positions. If enough thermal sights are available\
    \ , obscuration on\nthe objective may provide a decisive advantage for a well-trained\
    \ platoon.\nNote. I f the enemy is equipped with night vision devices , leaders\
    \ must evaluate \nthe risk of using each technique and ensure the mission is not\
    \ compromised by \nthe enemy’s ability to detect infrared light sources."
  sentences:
  - Can obscurants be used to hamper enemy fire support? How?
  - How can leaders effectively provide command and control during defensive operations?
  - What are the advantages of using infrared illumination in assaults?
model-index:
- name: deep learning project 2
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.0037313432835820895
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.013059701492537313
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.048507462686567165
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4496268656716418
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.0037313432835820895
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.00435323383084577
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.009701492537313432
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04496268656716418
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0037313432835820895
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.013059701492537313
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.048507462686567165
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4496268656716418
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.15012636108139818
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.06590188936271034
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.08623119999483674
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.0037313432835820895
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.011194029850746268
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.03731343283582089
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4458955223880597
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.0037313432835820895
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.003731343283582089
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.007462686567164179
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04458955223880597
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0037313432835820895
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.011194029850746268
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.03731343283582089
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4458955223880597
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.14887734118005805
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.06525334636342103
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.08587360417470279
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.0037313432835820895
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.009328358208955223
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.04664179104477612
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.43656716417910446
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.0037313432835820895
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.0031094527363184077
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.009328358208955225
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.043656716417910454
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0037313432835820895
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.009328358208955223
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.04664179104477612
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.43656716417910446
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.14645163034094227
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.06459073679222935
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.08473376158047675
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.0018656716417910447
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.007462686567164179
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.04291044776119403
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4216417910447761
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.0018656716417910447
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.0024875621890547263
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.008582089552238806
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04216417910447762
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0018656716417910447
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.007462686567164179
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.04291044776119403
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4216417910447761
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.13895211086835252
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.05946680289031035
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.07896404458930699
      name: Cosine Map@100
---

# deep learning project 2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bbmb/deep-learning-for-embedding-model-ssilwal-qpham6_army_doc")
# Run inference
sentences = [
    'Offense \n11 January 2024 ATP 3-21.8 4-61\nlight the target, making it easier to acquire effectively. Leaders and Soldiers \nuse the infrared devices to identify enemy or friendly personnel and then \nengage targets using their aiming lights. \n4-172. Illuminating rounds fired to burn on the ground can mark objectives. This helps\nthe platoon orient on the objective but may adversely affect night vision devices.\n4-173. Leaders plan but do not always use illumination during limited visibility\nattacks. Battalion commanders normally control conventional illumination but ma y\na\nuthorize the company commander to do so. If the commander decides to use\nconventional illumination , the commander should not call for it until the assault is\ninitiated or the attack is detected. It should be placed on several locations over a wide\narea to confuse the enemy as to the exact place of the attack. It should be placed beyond\nthe objective to help assaulting Soldiers see and fire at withdrawing or counterattacking\nenemy Soldiers. Infrared illumination is a good capability to light the objective without\nlighting it for enemy forces without night vision devices.  This advantage is degraded\nwhen used against a peer threat with the same night vision capabilities.\n4-174. The platoon leader , squad leaders , and vehicle commanders must know unit\ntactical SOP and develop sound COAs to synchronize the employment of infrared\nillumination devices , target designators , and aiming lights during their assault on the\nobjective. These include using luminous tape or chemical lights to mark personnel and\nusing weapons control restrictions.\n4-175. The platoon leader may use the following techniques to increase control during\nthe assault:\n\uf06c Use no flares, grenades, or obscuration on the objective.\n\uf06c Use mortar or artillery rounds to orient attacking units.\n\uf06c Use a base squad or fire team to pace and guide others.\n\uf06c Reduce intervals between Soldiers and squads.\n4-176. Like a daylight attack , indirect and direct fires are planned for a limited\nvisibility attack but are not executed unless the platoon is detected or is ready to assault.\nSome weapons may fire before the attack and maintain a pattern to deceive the enemy\nor to help cover noise ma de by the platoon ’s movement. This is not done if it will\ndisclose the attack.\n4-177. Obscuration further reduces the enemy’s visibility, particularly if the enemy has\nnight vision devices. The FO fires obscuration rounds close to or on enemy positions ,\nso it does not restrict friendly movement or hinder the reduction of obstacles. Employing \nobscuration on the objective during the assault may make it hard for assaulting Soldiers\nto find enemy fighting positions. If enough thermal sights are available , obscuration on\nthe objective may provide a decisive advantage for a well-trained platoon.\nNote. I f the enemy is equipped with night vision devices , leaders must evaluate \nthe risk of using each technique and ensure the mission is not compromised by \nthe enemy’s ability to detect infrared light sources.',
    'What are the advantages of using infrared illumination in assaults?',
    'How can leaders effectively provide command and control during defensive operations?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_384`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_384    | dim_256    | dim_128    | dim_64    |
|:--------------------|:-----------|:-----------|:-----------|:----------|
| cosine_accuracy@1   | 0.0037     | 0.0037     | 0.0037     | 0.0019    |
| cosine_accuracy@3   | 0.0131     | 0.0112     | 0.0093     | 0.0075    |
| cosine_accuracy@5   | 0.0485     | 0.0373     | 0.0466     | 0.0429    |
| cosine_accuracy@10  | 0.4496     | 0.4459     | 0.4366     | 0.4216    |
| cosine_precision@1  | 0.0037     | 0.0037     | 0.0037     | 0.0019    |
| cosine_precision@3  | 0.0044     | 0.0037     | 0.0031     | 0.0025    |
| cosine_precision@5  | 0.0097     | 0.0075     | 0.0093     | 0.0086    |
| cosine_precision@10 | 0.045      | 0.0446     | 0.0437     | 0.0422    |
| cosine_recall@1     | 0.0037     | 0.0037     | 0.0037     | 0.0019    |
| cosine_recall@3     | 0.0131     | 0.0112     | 0.0093     | 0.0075    |
| cosine_recall@5     | 0.0485     | 0.0373     | 0.0466     | 0.0429    |
| cosine_recall@10    | 0.4496     | 0.4459     | 0.4366     | 0.4216    |
| **cosine_ndcg@10**  | **0.1501** | **0.1489** | **0.1465** | **0.139** |
| cosine_mrr@10       | 0.0659     | 0.0653     | 0.0646     | 0.0595    |
| cosine_map@100      | 0.0862     | 0.0859     | 0.0847     | 0.079     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 4,820 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                              | anchor                                                                            |
  |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                                | string                                                                            |
  | details | <ul><li>min: 100 tokens</li><li>mean: 248.18 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 15.06 tokens</li><li>max: 27 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anchor                                                                                                         |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|
  | <code>Appendix A <br>A-22 ATP 3-21.8 11 January 2024 <br>A-68. Observed fire. Usually is used when the platoon is in protected defensive positions <br>with engagement ranges more than 2,500 meters for stabilized systems (when attached)<br>and 1,500 meters for unstabilized systems. It can be employed between elements of the<br>platoon, such as the squad lasing and observing while the weapons squad engages. The<br>platoon leader directs one squad to engage. The remaining squads observe fires and<br>prepare to engage on order in case the engaging element consistently misses its targets ,<br>experiences a malfunction, or runs low on ammunition. Observed fire allows for mutual<br>observation and assistance while protecting the location of the observing elements.<br>A-69. Sequential fire. Entails the subordinate elements of a unit engaging the same point <br>or area target one after another in an arranged sequence. Sequential fire also can help to<br>prevent the waste of ammunition, as when a platoon waits to see the effects of the ...</code>                                                          | <code>What is the purpose of having one squad engage while others observe in an observed fire scenario?</code> |
  | <code>Glossary <br>Glossary-4 ATP 3-21.8 11 January 2024 <br>PLD probable line of deployment <br>PPEP personal protective equipment posture <br>RFL restrictive fire line <br>RM risk management <br>ROE rules of engagement <br>RS reduced sensitivity <br>RTO radiotelephone operator <br>S-2 battalion or brigade intelligence staff officer <br>SALUTE size, activity, location, unit, time, and equipment <br>SDM squad-designated marksman  <br>SITEMP situation template <br>SLM shoulder-launched munition <br>SOP standard operating procedure <br>STP Soldier training publication <br>TAA tactical assembly area <br>TC training circular <br>TCCC tactical combat casualty care <br>TLP troop leading procedures <br>TM technical manual <br>TRP target reference point <br>U.S. United States <br>WARNORD warning order <br>WCS weapons control status <br>WP white phosphorous <br>SECTION II – TERMS <br>actions on contact <br>A process to help leaders understand what is happening and to take action. <br>(FM 3-90) <br>air-ground operations <br>The simultaneous or synchronized employment of ground forces with avi...</code> | <code>How is the term SDM used in the military?</code>                                                         |
  | <code>Chapter 1 <br>1-2 ATP 3-21.8 11 January 2024 <br>MISSION, CAPABILITIES, AND LIMITATIONS <br>1-2. The mission of the Infantry rifle platoon is to close with the enemy using fire and<br>movement to destroy or capture enemy forces , or to repel enemy attacks by fire , close<br>co<br>mbat, and counterattack to control land areas , including populations and resources.<br>The Infantry rifle platoon leader exercises command and control and directs the<br>operation of the platoon and attached units while conducting combined arms warfare<br>throughout the depth of the platoon’s area of operations (AO). Platoon missions ,<br>although not  inclusive, may include reducing fortified areas , infiltrating and seizing<br>objectives in the enemy’ s rear, eliminating enemy force remnants in restricted terrain ,<br>securing key facilities and activities, and conducting operations in support of stability<br>operations tasks in the wake of maneuvering forces. Reconnaissance and surveillance<br>operations and security operations remain a core compe...</code>                                                    | <code>What offensive and defensive actions can an Infantry rifle platoon perform?</code>                       |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `num_train_epochs`: 20
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch    | Step    | Training Loss | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:--------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.9474   | 9       | -             | 0.1225                 | 0.1221                 | 0.1145                 | 0.0915                |
| 1.0526   | 10      | 7.2521        | -                      | -                      | -                      | -                     |
| 2.0      | 19      | -             | 0.1296                 | 0.1261                 | 0.1157                 | 0.1089                |
| 2.1053   | 20      | 5.4977        | -                      | -                      | -                      | -                     |
| 2.9474   | 28      | -             | 0.1294                 | 0.1377                 | 0.1262                 | 0.1090                |
| 3.1579   | 30      | 4.3477        | -                      | -                      | -                      | -                     |
| 4.0      | 38      | -             | 0.1330                 | 0.1378                 | 0.1260                 | 0.1126                |
| 4.2105   | 40      | 3.3767        | -                      | -                      | -                      | -                     |
| 4.9474   | 47      | -             | 0.1415                 | 0.1388                 | 0.1294                 | 0.1221                |
| 5.2632   | 50      | 2.6443        | -                      | -                      | -                      | -                     |
| 6.0      | 57      | -             | 0.1515                 | 0.1395                 | 0.1348                 | 0.1218                |
| 6.3158   | 60      | 2.0824        | -                      | -                      | -                      | -                     |
| 6.9474   | 66      | -             | 0.1480                 | 0.1411                 | 0.1335                 | 0.1242                |
| 7.3684   | 70      | 1.6734        | -                      | -                      | -                      | -                     |
| 8.0      | 76      | -             | 0.1491                 | 0.1481                 | 0.1428                 | 0.1313                |
| 8.4211   | 80      | 1.3894        | -                      | -                      | -                      | -                     |
| 8.9474   | 85      | -             | 0.1449                 | 0.1497                 | 0.1419                 | 0.1341                |
| 9.4737   | 90      | 1.1443        | -                      | -                      | -                      | -                     |
| 10.0     | 95      | -             | 0.1466                 | 0.1494                 | 0.1399                 | 0.1396                |
| 10.5263  | 100     | 1.0121        | -                      | -                      | -                      | -                     |
| 10.9474  | 104     | -             | 0.1458                 | 0.1477                 | 0.1415                 | 0.1371                |
| 11.5789  | 110     | 0.8833        | -                      | -                      | -                      | -                     |
| 12.0     | 114     | -             | 0.1479                 | 0.1474                 | 0.1445                 | 0.1374                |
| 12.6316  | 120     | 0.8201        | -                      | -                      | -                      | -                     |
| 12.9474  | 123     | -             | 0.1519                 | 0.1486                 | 0.1458                 | 0.1360                |
| 13.6842  | 130     | 0.736         | -                      | -                      | -                      | -                     |
| **14.0** | **133** | **-**         | **0.1505**             | **0.1471**             | **0.1484**             | **0.1376**            |
| 14.7368  | 140     | 0.6924        | -                      | -                      | -                      | -                     |
| 14.9474  | 142     | -             | 0.1496                 | 0.1486                 | 0.1451                 | 0.1396                |
| 15.7895  | 150     | 0.672         | -                      | -                      | -                      | -                     |
| 16.0     | 152     | -             | 0.1492                 | 0.1489                 | 0.1464                 | 0.1404                |
| 16.8421  | 160     | 0.6455        | -                      | -                      | -                      | -                     |
| 16.9474  | 161     | -             | 0.1496                 | 0.1493                 | 0.1468                 | 0.1389                |
| 17.8947  | 170     | 0.6538        | -                      | -                      | -                      | -                     |
| 18.0     | 171     | -             | 0.1501                 | 0.1470                 | 0.1461                 | 0.1393                |
| 18.9474  | 180     | 0.628         | 0.1501                 | 0.1489                 | 0.1465                 | 0.1390                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->