bartowski commited on
Commit
551317d
·
verified ·
1 Parent(s): 29169a5

Quant for 5.0

Browse files
LICENSE ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LLAMA 3.1 COMMUNITY LICENSE AGREEMENT
2
+ Llama 3.1 Version Release Date: July 23, 2024
3
+
4
+ “Agreement” means the terms and conditions for use, reproduction, distribution and modification of the
5
+ Llama Materials set forth herein.
6
+
7
+ “Documentation” means the specifications, manuals and documentation accompanying Llama 3.1
8
+ distributed by Meta at https://llama.meta.com/doc/overview.
9
+
10
+ “Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into
11
+ this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or
12
+ regulations to provide legal consent and that has legal authority to bind your employer or such other
13
+ person or entity if you are entering in this Agreement on their behalf.
14
+
15
+ “Llama 3.1” means the foundational large language models and software and algorithms, including
16
+ machine-learning model code, trained model weights, inference-enabling code, training-enabling code,
17
+ fine-tuning enabling code and other elements of the foregoing distributed by Meta at
18
+ https://llama.meta.com/llama-downloads.
19
+
20
+ “Llama Materials” means, collectively, Meta’s proprietary Llama 3.1 and Documentation (and any
21
+ portion thereof) made available under this Agreement.
22
+
23
+ “Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your
24
+ principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located
25
+ outside of the EEA or Switzerland).
26
+
27
+ By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials,
28
+ you agree to be bound by this Agreement.
29
+
30
+ 1. License Rights and Redistribution.
31
+
32
+ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free
33
+ limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama
34
+ Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the
35
+ Llama Materials.
36
+
37
+ b. Redistribution and Use.
38
+
39
+ i. If you distribute or make available the Llama Materials (or any derivative works
40
+ thereof), or a product or service (including another AI model) that contains any of them, you shall (A)
41
+ provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with
42
+ Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use
43
+ the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or
44
+ otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at
45
+ the beginning of any such AI model name.
46
+
47
+ ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part
48
+ of an integrated end user product, then Section 2 of this Agreement will not apply to you.
49
+
50
+ iii. You must retain in all copies of the Llama Materials that you distribute the following
51
+ attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.1 is
52
+ licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. All Rights
53
+ Reserved.”
54
+
55
+ iv. Your use of the Llama Materials must comply with applicable laws and regulations
56
+ (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama
57
+ Materials (available at https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by
58
+ reference into this Agreement.
59
+
60
+ 2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the monthly active users
61
+ of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700
62
+ million monthly active users in the preceding calendar month, you must request a license from Meta,
63
+ which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the
64
+ rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
65
+
66
+ 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY
67
+ OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF
68
+ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,
69
+ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT,
70
+ MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR
71
+ DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND
72
+ ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND
73
+ RESULTS.
74
+
75
+ 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF
76
+ LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING
77
+ OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,
78
+ INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED
79
+ OF THE POSSIBILITY OF ANY OF THE FOREGOING.
80
+
81
+ 5. Intellectual Property.
82
+
83
+ a. No trademark licenses are granted under this Agreement, and in connection with the Llama
84
+ Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other
85
+ or any of its affiliates, except as required for reasonable and customary use in describing and
86
+ redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to
87
+ use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will
88
+ comply with Meta’s brand guidelines (currently accessible at
89
+ https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use
90
+ of the Mark will inure to the benefit of Meta.
91
+
92
+ b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with
93
+ respect to any derivative works and modifications of the Llama Materials that are made by you, as
94
+ between you and Meta, you are and will be the owner of such derivative works and modifications.
95
+
96
+ c. If you institute litigation or other proceedings against Meta or any entity (including a
97
+ cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs or
98
+ results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other
99
+ rights owned or licensable by you, then any licenses granted to you under this Agreement shall
100
+ terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold
101
+ harmless Meta from and against any claim by any third party arising out of or related to your use or
102
+ distribution of the Llama Materials.
103
+
104
+ 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this
105
+ Agreement or access to the Llama Materials and will continue in full force and effect until terminated in
106
+ accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in
107
+ breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete
108
+ and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this
109
+ Agreement.
110
+
111
+ 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of
112
+ the State of California without regard to choice of law principles, and the UN Convention on Contracts
113
+ for the International Sale of Goods does not apply to this Agreement. The courts of California shall have
114
+ exclusive jurisdiction of any dispute arising out of this Agreement.
README.md CHANGED
@@ -188,70 +188,1102 @@ extra_gated_fields:
188
  extra_gated_description: The information you provide will be collected, stored, processed
189
  and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
190
  extra_gated_button_content: Submit
191
- quantized_by: bartowski
192
  ---
193
 
194
- ## Exllama v2 Quantizations of Meta-Llama-3.1-70B-Instruct
195
 
196
- Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.1.9">turboderp's ExLlamaV2 v0.1.9</a> for quantization.
197
 
198
- <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b>
199
 
200
- Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
201
 
202
- Conversion was done using the default calibration dataset.
203
 
204
- Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205
 
206
- Original model: https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct
207
 
 
208
 
209
- <a href="https://huggingface.co/bartowski/Meta-Llama-3.1-70B-Instruct-exl2/tree/8_0">8.0 bits per weight</a>
210
 
211
- <a href="https://huggingface.co/bartowski/Meta-Llama-3.1-70B-Instruct-exl2/tree/6_5">6.5 bits per weight</a>
212
 
213
- <a href="https://huggingface.co/bartowski/Meta-Llama-3.1-70B-Instruct-exl2/tree/5_0">5.0 bits per weight</a>
214
 
215
- <a href="https://huggingface.co/bartowski/Meta-Llama-3.1-70B-Instruct-exl2/tree/4_25">4.25 bits per weight</a>
216
 
217
- <a href="https://huggingface.co/bartowski/Meta-Llama-3.1-70B-Instruct-exl2/tree/3_5">3.5 bits per weight</a>
218
 
219
- <a href="https://huggingface.co/bartowski/Meta-Llama-3.1-70B-Instruct-exl2/tree/2_2">2.2 bits per weight</a>
220
 
 
221
 
222
- ## Download instructions
223
 
224
- With git:
225
 
226
- ```shell
227
- git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Meta-Llama-3.1-70B-Instruct-exl2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
  ```
229
 
230
- With huggingface hub (credit to TheBloke for instructions):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
 
232
- ```shell
233
- pip3 install huggingface-hub
234
  ```
235
 
236
- To download the `main` (only useful if you only care about measurement.json) branch to a folder called `Meta-Llama-3.1-70B-Instruct-exl2`:
237
 
238
- ```shell
239
- mkdir Meta-Llama-3.1-70B-Instruct-exl2
240
- huggingface-cli download bartowski/Meta-Llama-3.1-70B-Instruct-exl2 --local-dir Meta-Llama-3.1-70B-Instruct-exl2
241
  ```
242
 
243
- To download from a different branch, add the `--revision` parameter:
244
 
245
- Linux:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
 
247
- ```shell
248
- mkdir Meta-Llama-3.1-70B-Instruct-exl2-6_5
249
- huggingface-cli download bartowski/Meta-Llama-3.1-70B-Instruct-exl2 --revision 6_5 --local-dir Meta-Llama-3.1-70B-Instruct-exl2-6_5
 
 
 
 
 
 
 
 
 
 
250
  ```
251
 
252
- Windows (which apparently doesn't like _ in folders sometimes?):
 
 
 
 
 
 
253
 
254
- ```shell
255
- mkdir Meta-Llama-3.1-70B-Instruct-exl2-6.5
256
- huggingface-cli download bartowski/Meta-Llama-3.1-70B-Instruct-exl2 --revision 6_5 --local-dir Meta-Llama-3.1-70B-Instruct-exl2-6.5
257
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188
  extra_gated_description: The information you provide will be collected, stored, processed
189
  and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
190
  extra_gated_button_content: Submit
 
191
  ---
192
 
193
+ ## Model Information
194
 
195
+ The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
196
 
197
+ **Model developer**: Meta
198
 
199
+ **Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
200
 
 
201
 
202
+ <table>
203
+ <tr>
204
+ <td>
205
+ </td>
206
+ <td><strong>Training Data</strong>
207
+ </td>
208
+ <td><strong>Params</strong>
209
+ </td>
210
+ <td><strong>Input modalities</strong>
211
+ </td>
212
+ <td><strong>Output modalities</strong>
213
+ </td>
214
+ <td><strong>Context length</strong>
215
+ </td>
216
+ <td><strong>GQA</strong>
217
+ </td>
218
+ <td><strong>Token count</strong>
219
+ </td>
220
+ <td><strong>Knowledge cutoff</strong>
221
+ </td>
222
+ </tr>
223
+ <tr>
224
+ <td rowspan="3" >Llama 3.1 (text only)
225
+ </td>
226
+ <td rowspan="3" >A new mix of publicly available online data.
227
+ </td>
228
+ <td>8B
229
+ </td>
230
+ <td>Multilingual Text
231
+ </td>
232
+ <td>Multilingual Text and code
233
+ </td>
234
+ <td>128k
235
+ </td>
236
+ <td>Yes
237
+ </td>
238
+ <td rowspan="3" >15T+
239
+ </td>
240
+ <td rowspan="3" >December 2023
241
+ </td>
242
+ </tr>
243
+ <tr>
244
+ <td>70B
245
+ </td>
246
+ <td>Multilingual Text
247
+ </td>
248
+ <td>Multilingual Text and code
249
+ </td>
250
+ <td>128k
251
+ </td>
252
+ <td>Yes
253
+ </td>
254
+ </tr>
255
+ <tr>
256
+ <td>405B
257
+ </td>
258
+ <td>Multilingual Text
259
+ </td>
260
+ <td>Multilingual Text and code
261
+ </td>
262
+ <td>128k
263
+ </td>
264
+ <td>Yes
265
+ </td>
266
+ </tr>
267
+ </table>
268
 
 
269
 
270
+ **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
271
 
272
+ **Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
273
 
274
+ **Model Release Date:** July 23, 2024.
275
 
276
+ **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
277
 
278
+ **License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
279
 
280
+ Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
281
 
 
282
 
283
+ ## Intended Use
284
 
285
+ **Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases.
286
 
287
+ **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**.
288
 
289
+ **<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner.
290
+
291
+ ## How to use
292
+
293
+ This repository contains two versions of Meta-Llama-3.1-70B-Instruct, for use with transformers and with the original `llama` codebase.
294
+
295
+ ### Use with transformers
296
+
297
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
298
+
299
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
300
+
301
+ See the snippet below for usage with Transformers:
302
+
303
+ ```python
304
+ import transformers
305
+ import torch
306
+
307
+ model_id = "meta-llama/Meta-Llama-3.1-70B-Instruct"
308
+
309
+ pipeline = transformers.pipeline(
310
+ "text-generation",
311
+ model=model_id,
312
+ model_kwargs={"torch_dtype": torch.bfloat16},
313
+ device_map="auto",
314
+ )
315
+
316
+ messages = [
317
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
318
+ {"role": "user", "content": "Who are you?"},
319
+ ]
320
+
321
+ outputs = pipeline(
322
+ messages,
323
+ max_new_tokens=256,
324
+ )
325
+ print(outputs[0]["generated_text"][-1])
326
  ```
327
 
328
+ ### Tool use with transformers
329
+
330
+ LLaMA-3.1 supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
331
+
332
+ Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
333
+ Here is a quick example showing a single simple tool:
334
+
335
+ ```python
336
+ # First, define a tool
337
+ def get_current_temperature(location: str) -> float:
338
+ """
339
+ Get the current temperature at a location.
340
+
341
+ Args:
342
+ location: The location to get the temperature for, in the format "City, Country"
343
+ Returns:
344
+ The current temperature at the specified location in the specified units, as a float.
345
+ """
346
+ return 22. # A real function should probably actually get the temperature!
347
+
348
+ # Next, create a chat and apply the chat template
349
+ messages = [
350
+ {"role": "system", "content": "You are a bot that responds to weather queries."},
351
+ {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
352
+ ]
353
 
354
+ inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
 
355
  ```
356
 
357
+ You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
358
 
359
+ ```python
360
+ tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
361
+ messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
362
  ```
363
 
364
+ and then call the tool and append the result, with the `tool` role, like so:
365
 
366
+ ```python
367
+ messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
368
+ ```
369
+
370
+ After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
371
+ see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
372
+
373
+
374
+ ### Use with `bitsandbytes`
375
+
376
+ The model checkpoints can be used in `8-bit` and `4-bit` for further memory optimisations using `bitsandbytes` and `transformers`
377
+
378
+ See the snippet below for usage:
379
+
380
+ ```python
381
+ import torch
382
+ from transformers import AutoModelForCausalLM, AutoTokenizer
383
 
384
+ model_id = "meta-llama/Meta-Llama-3.1-70B-Instruct"
385
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
386
+
387
+ quantized_model = AutoModelForCausalLM.from_pretrained(
388
+ model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
389
+
390
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
391
+ input_text = "What are we having for dinner?"
392
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
393
+
394
+ output = quantized_model.generate(**input_ids, max_new_tokens=10)
395
+
396
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
397
  ```
398
 
399
+ To load in 4-bit simply pass `load_in_4bit=True`
400
+
401
+ ### Use with `llama`
402
+
403
+ Please, follow the instructions in the [repository](https://github.com/meta-llama/llama).
404
+
405
+ To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
406
 
 
 
 
407
  ```
408
+ huggingface-cli download meta-llama/Meta-Llama-3.1-70B-Instruct --include "original/*" --local-dir Meta-Llama-3.1-70B-Instruct
409
+ ```
410
+
411
+
412
+ ## Hardware and Software
413
+
414
+ **Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
415
+
416
+ **Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
417
+
418
+
419
+ **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
420
+
421
+
422
+ <table>
423
+ <tr>
424
+ <td>
425
+ </td>
426
+ <td><strong>Training Time (GPU hours)</strong>
427
+ </td>
428
+ <td><strong>Training Power Consumption (W)</strong>
429
+ </td>
430
+ <td><strong>Training Location-Based Greenhouse Gas Emissions</strong>
431
+ <p>
432
+ <strong>(tons CO2eq)</strong>
433
+ </td>
434
+ <td><strong>Training Market-Based Greenhouse Gas Emissions</strong>
435
+ <p>
436
+ <strong>(tons CO2eq)</strong>
437
+ </td>
438
+ </tr>
439
+ <tr>
440
+ <td>Llama 3.1 8B
441
+ </td>
442
+ <td>1.46M
443
+ </td>
444
+ <td>700
445
+ </td>
446
+ <td>420
447
+ </td>
448
+ <td>0
449
+ </td>
450
+ </tr>
451
+ <tr>
452
+ <td>Llama 3.1 70B
453
+ </td>
454
+ <td>7.0M
455
+ </td>
456
+ <td>700
457
+ </td>
458
+ <td>2,040
459
+ </td>
460
+ <td>0
461
+ </td>
462
+ </tr>
463
+ <tr>
464
+ <td>Llama 3.1 405B
465
+ </td>
466
+ <td>30.84M
467
+ </td>
468
+ <td>700
469
+ </td>
470
+ <td>8,930
471
+ </td>
472
+ <td>0
473
+ </td>
474
+ </tr>
475
+ <tr>
476
+ <td>Total
477
+ </td>
478
+ <td>39.3M
479
+ <td>
480
+ <ul>
481
+
482
+ </ul>
483
+ </td>
484
+ <td>11,390
485
+ </td>
486
+ <td>0
487
+ </td>
488
+ </tr>
489
+ </table>
490
+
491
+
492
+
493
+ The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
494
+
495
+
496
+ ## Training Data
497
+
498
+ **Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
499
+
500
+ **Data Freshness:** The pretraining data has a cutoff of December 2023.
501
+
502
+
503
+ ## Benchmark scores
504
+
505
+ In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library.
506
+
507
+ ### Base pretrained models
508
+
509
+
510
+ <table>
511
+ <tr>
512
+ <td><strong>Category</strong>
513
+ </td>
514
+ <td><strong>Benchmark</strong>
515
+ </td>
516
+ <td><strong># Shots</strong>
517
+ </td>
518
+ <td><strong>Metric</strong>
519
+ </td>
520
+ <td><strong>Llama 3 8B</strong>
521
+ </td>
522
+ <td><strong>Llama 3.1 8B</strong>
523
+ </td>
524
+ <td><strong>Llama 3 70B</strong>
525
+ </td>
526
+ <td><strong>Llama 3.1 70B</strong>
527
+ </td>
528
+ <td><strong>Llama 3.1 405B</strong>
529
+ </td>
530
+ </tr>
531
+ <tr>
532
+ <td rowspan="7" >General
533
+ </td>
534
+ <td>MMLU
535
+ </td>
536
+ <td>5
537
+ </td>
538
+ <td>macro_avg/acc_char
539
+ </td>
540
+ <td>66.7
541
+ </td>
542
+ <td>66.7
543
+ </td>
544
+ <td>79.5
545
+ </td>
546
+ <td>79.3
547
+ </td>
548
+ <td>85.2
549
+ </td>
550
+ </tr>
551
+ <tr>
552
+ <td>MMLU-Pro (CoT)
553
+ </td>
554
+ <td>5
555
+ </td>
556
+ <td>macro_avg/acc_char
557
+ </td>
558
+ <td>36.2
559
+ </td>
560
+ <td>37.1
561
+ </td>
562
+ <td>55.0
563
+ </td>
564
+ <td>53.8
565
+ </td>
566
+ <td>61.6
567
+ </td>
568
+ </tr>
569
+ <tr>
570
+ <td>AGIEval English
571
+ </td>
572
+ <td>3-5
573
+ </td>
574
+ <td>average/acc_char
575
+ </td>
576
+ <td>47.1
577
+ </td>
578
+ <td>47.8
579
+ </td>
580
+ <td>63.0
581
+ </td>
582
+ <td>64.6
583
+ </td>
584
+ <td>71.6
585
+ </td>
586
+ </tr>
587
+ <tr>
588
+ <td>CommonSenseQA
589
+ </td>
590
+ <td>7
591
+ </td>
592
+ <td>acc_char
593
+ </td>
594
+ <td>72.6
595
+ </td>
596
+ <td>75.0
597
+ </td>
598
+ <td>83.8
599
+ </td>
600
+ <td>84.1
601
+ </td>
602
+ <td>85.8
603
+ </td>
604
+ </tr>
605
+ <tr>
606
+ <td>Winogrande
607
+ </td>
608
+ <td>5
609
+ </td>
610
+ <td>acc_char
611
+ </td>
612
+ <td>-
613
+ </td>
614
+ <td>60.5
615
+ </td>
616
+ <td>-
617
+ </td>
618
+ <td>83.3
619
+ </td>
620
+ <td>86.7
621
+ </td>
622
+ </tr>
623
+ <tr>
624
+ <td>BIG-Bench Hard (CoT)
625
+ </td>
626
+ <td>3
627
+ </td>
628
+ <td>average/em
629
+ </td>
630
+ <td>61.1
631
+ </td>
632
+ <td>64.2
633
+ </td>
634
+ <td>81.3
635
+ </td>
636
+ <td>81.6
637
+ </td>
638
+ <td>85.9
639
+ </td>
640
+ </tr>
641
+ <tr>
642
+ <td>ARC-Challenge
643
+ </td>
644
+ <td>25
645
+ </td>
646
+ <td>acc_char
647
+ </td>
648
+ <td>79.4
649
+ </td>
650
+ <td>79.7
651
+ </td>
652
+ <td>93.1
653
+ </td>
654
+ <td>92.9
655
+ </td>
656
+ <td>96.1
657
+ </td>
658
+ </tr>
659
+ <tr>
660
+ <td>Knowledge reasoning
661
+ </td>
662
+ <td>TriviaQA-Wiki
663
+ </td>
664
+ <td>5
665
+ </td>
666
+ <td>em
667
+ </td>
668
+ <td>78.5
669
+ </td>
670
+ <td>77.6
671
+ </td>
672
+ <td>89.7
673
+ </td>
674
+ <td>89.8
675
+ </td>
676
+ <td>91.8
677
+ </td>
678
+ </tr>
679
+ <tr>
680
+ <td rowspan="4" >Reading comprehension
681
+ </td>
682
+ <td>SQuAD
683
+ </td>
684
+ <td>1
685
+ </td>
686
+ <td>em
687
+ </td>
688
+ <td>76.4
689
+ </td>
690
+ <td>77.0
691
+ </td>
692
+ <td>85.6
693
+ </td>
694
+ <td>81.8
695
+ </td>
696
+ <td>89.3
697
+ </td>
698
+ </tr>
699
+ <tr>
700
+ <td>QuAC (F1)
701
+ </td>
702
+ <td>1
703
+ </td>
704
+ <td>f1
705
+ </td>
706
+ <td>44.4
707
+ </td>
708
+ <td>44.9
709
+ </td>
710
+ <td>51.1
711
+ </td>
712
+ <td>51.1
713
+ </td>
714
+ <td>53.6
715
+ </td>
716
+ </tr>
717
+ <tr>
718
+ <td>BoolQ
719
+ </td>
720
+ <td>0
721
+ </td>
722
+ <td>acc_char
723
+ </td>
724
+ <td>75.7
725
+ </td>
726
+ <td>75.0
727
+ </td>
728
+ <td>79.0
729
+ </td>
730
+ <td>79.4
731
+ </td>
732
+ <td>80.0
733
+ </td>
734
+ </tr>
735
+ <tr>
736
+ <td>DROP (F1)
737
+ </td>
738
+ <td>3
739
+ </td>
740
+ <td>f1
741
+ </td>
742
+ <td>58.4
743
+ </td>
744
+ <td>59.5
745
+ </td>
746
+ <td>79.7
747
+ </td>
748
+ <td>79.6
749
+ </td>
750
+ <td>84.8
751
+ </td>
752
+ </tr>
753
+ </table>
754
+
755
+
756
+
757
+ ### Instruction tuned models
758
+
759
+
760
+ <table>
761
+ <tr>
762
+ <td><strong>Category</strong>
763
+ </td>
764
+ <td><strong>Benchmark</strong>
765
+ </td>
766
+ <td><strong># Shots</strong>
767
+ </td>
768
+ <td><strong>Metric</strong>
769
+ </td>
770
+ <td><strong>Llama 3 8B Instruct</strong>
771
+ </td>
772
+ <td><strong>Llama 3.1 8B Instruct</strong>
773
+ </td>
774
+ <td><strong>Llama 3 70B Instruct</strong>
775
+ </td>
776
+ <td><strong>Llama 3.1 70B Instruct</strong>
777
+ </td>
778
+ <td><strong>Llama 3.1 405B Instruct</strong>
779
+ </td>
780
+ </tr>
781
+ <tr>
782
+ <td rowspan="4" >General
783
+ </td>
784
+ <td>MMLU
785
+ </td>
786
+ <td>5
787
+ </td>
788
+ <td>macro_avg/acc
789
+ </td>
790
+ <td>68.5
791
+ </td>
792
+ <td>69.4
793
+ </td>
794
+ <td>82.0
795
+ </td>
796
+ <td>83.6
797
+ </td>
798
+ <td>87.3
799
+ </td>
800
+ </tr>
801
+ <tr>
802
+ <td>MMLU (CoT)
803
+ </td>
804
+ <td>0
805
+ </td>
806
+ <td>macro_avg/acc
807
+ </td>
808
+ <td>65.3
809
+ </td>
810
+ <td>73.0
811
+ </td>
812
+ <td>80.9
813
+ </td>
814
+ <td>86.0
815
+ </td>
816
+ <td>88.6
817
+ </td>
818
+ </tr>
819
+ <tr>
820
+ <td>MMLU-Pro (CoT)
821
+ </td>
822
+ <td>5
823
+ </td>
824
+ <td>micro_avg/acc_char
825
+ </td>
826
+ <td>45.5
827
+ </td>
828
+ <td>48.3
829
+ </td>
830
+ <td>63.4
831
+ </td>
832
+ <td>66.4
833
+ </td>
834
+ <td>73.3
835
+ </td>
836
+ </tr>
837
+ <tr>
838
+ <td>IFEval
839
+ </td>
840
+ <td>
841
+ </td>
842
+ <td>
843
+ </td>
844
+ <td>76.8
845
+ </td>
846
+ <td>80.4
847
+ </td>
848
+ <td>82.9
849
+ </td>
850
+ <td>87.5
851
+ </td>
852
+ <td>88.6
853
+ </td>
854
+ </tr>
855
+ <tr>
856
+ <td rowspan="2" >Reasoning
857
+ </td>
858
+ <td>ARC-C
859
+ </td>
860
+ <td>0
861
+ </td>
862
+ <td>acc
863
+ </td>
864
+ <td>82.4
865
+ </td>
866
+ <td>83.4
867
+ </td>
868
+ <td>94.4
869
+ </td>
870
+ <td>94.8
871
+ </td>
872
+ <td>96.9
873
+ </td>
874
+ </tr>
875
+ <tr>
876
+ <td>GPQA
877
+ </td>
878
+ <td>0
879
+ </td>
880
+ <td>em
881
+ </td>
882
+ <td>34.6
883
+ </td>
884
+ <td>30.4
885
+ </td>
886
+ <td>39.5
887
+ </td>
888
+ <td>41.7
889
+ </td>
890
+ <td>50.7
891
+ </td>
892
+ </tr>
893
+ <tr>
894
+ <td rowspan="4" >Code
895
+ </td>
896
+ <td>HumanEval
897
+ </td>
898
+ <td>0
899
+ </td>
900
+ <td>pass@1
901
+ </td>
902
+ <td>60.4
903
+ </td>
904
+ <td>72.6
905
+ </td>
906
+ <td>81.7
907
+ </td>
908
+ <td>80.5
909
+ </td>
910
+ <td>89.0
911
+ </td>
912
+ </tr>
913
+ <tr>
914
+ <td>MBPP ++ base version
915
+ </td>
916
+ <td>0
917
+ </td>
918
+ <td>pass@1
919
+ </td>
920
+ <td>70.6
921
+ </td>
922
+ <td>72.8
923
+ </td>
924
+ <td>82.5
925
+ </td>
926
+ <td>86.0
927
+ </td>
928
+ <td>88.6
929
+ </td>
930
+ </tr>
931
+ <tr>
932
+ <td>Multipl-E HumanEval
933
+ </td>
934
+ <td>0
935
+ </td>
936
+ <td>pass@1
937
+ </td>
938
+ <td>-
939
+ </td>
940
+ <td>50.8
941
+ </td>
942
+ <td>-
943
+ </td>
944
+ <td>65.5
945
+ </td>
946
+ <td>75.2
947
+ </td>
948
+ </tr>
949
+ <tr>
950
+ <td>Multipl-E MBPP
951
+ </td>
952
+ <td>0
953
+ </td>
954
+ <td>pass@1
955
+ </td>
956
+ <td>-
957
+ </td>
958
+ <td>52.4
959
+ </td>
960
+ <td>-
961
+ </td>
962
+ <td>62.0
963
+ </td>
964
+ <td>65.7
965
+ </td>
966
+ </tr>
967
+ <tr>
968
+ <td rowspan="2" >Math
969
+ </td>
970
+ <td>GSM-8K (CoT)
971
+ </td>
972
+ <td>8
973
+ </td>
974
+ <td>em_maj1@1
975
+ </td>
976
+ <td>80.6
977
+ </td>
978
+ <td>84.5
979
+ </td>
980
+ <td>93.0
981
+ </td>
982
+ <td>95.1
983
+ </td>
984
+ <td>96.8
985
+ </td>
986
+ </tr>
987
+ <tr>
988
+ <td>MATH (CoT)
989
+ </td>
990
+ <td>0
991
+ </td>
992
+ <td>final_em
993
+ </td>
994
+ <td>29.1
995
+ </td>
996
+ <td>51.9
997
+ </td>
998
+ <td>51.0
999
+ </td>
1000
+ <td>68.0
1001
+ </td>
1002
+ <td>73.8
1003
+ </td>
1004
+ </tr>
1005
+ <tr>
1006
+ <td rowspan="4" >Tool Use
1007
+ </td>
1008
+ <td>API-Bank
1009
+ </td>
1010
+ <td>0
1011
+ </td>
1012
+ <td>acc
1013
+ </td>
1014
+ <td>48.3
1015
+ </td>
1016
+ <td>82.6
1017
+ </td>
1018
+ <td>85.1
1019
+ </td>
1020
+ <td>90.0
1021
+ </td>
1022
+ <td>92.0
1023
+ </td>
1024
+ </tr>
1025
+ <tr>
1026
+ <td>BFCL
1027
+ </td>
1028
+ <td>0
1029
+ </td>
1030
+ <td>acc
1031
+ </td>
1032
+ <td>60.3
1033
+ </td>
1034
+ <td>76.1
1035
+ </td>
1036
+ <td>83.0
1037
+ </td>
1038
+ <td>84.8
1039
+ </td>
1040
+ <td>88.5
1041
+ </td>
1042
+ </tr>
1043
+ <tr>
1044
+ <td>Gorilla Benchmark API Bench
1045
+ </td>
1046
+ <td>0
1047
+ </td>
1048
+ <td>acc
1049
+ </td>
1050
+ <td>1.7
1051
+ </td>
1052
+ <td>8.2
1053
+ </td>
1054
+ <td>14.7
1055
+ </td>
1056
+ <td>29.7
1057
+ </td>
1058
+ <td>35.3
1059
+ </td>
1060
+ </tr>
1061
+ <tr>
1062
+ <td>Nexus (0-shot)
1063
+ </td>
1064
+ <td>0
1065
+ </td>
1066
+ <td>macro_avg/acc
1067
+ </td>
1068
+ <td>18.1
1069
+ </td>
1070
+ <td>38.5
1071
+ </td>
1072
+ <td>47.8
1073
+ </td>
1074
+ <td>56.7
1075
+ </td>
1076
+ <td>58.7
1077
+ </td>
1078
+ </tr>
1079
+ <tr>
1080
+ <td>Multilingual
1081
+ </td>
1082
+ <td>Multilingual MGSM (CoT)
1083
+ </td>
1084
+ <td>0
1085
+ </td>
1086
+ <td>em
1087
+ </td>
1088
+ <td>-
1089
+ </td>
1090
+ <td>68.9
1091
+ </td>
1092
+ <td>-
1093
+ </td>
1094
+ <td>86.9
1095
+ </td>
1096
+ <td>91.6
1097
+ </td>
1098
+ </tr>
1099
+ </table>
1100
+
1101
+ #### Multilingual benchmarks
1102
+
1103
+ <table>
1104
+ <tr>
1105
+ <td><strong>Category</strong>
1106
+ </td>
1107
+ <td><strong>Benchmark</strong>
1108
+ </td>
1109
+ <td><strong>Language</strong>
1110
+ </td>
1111
+ <td><strong>Llama 3.1 8B</strong>
1112
+ </td>
1113
+ <td><strong>Llama 3.1 70B</strong>
1114
+ </td>
1115
+ <td><strong>Llama 3.1 405B</strong>
1116
+ </td>
1117
+ </tr>
1118
+ <tr>
1119
+ <td rowspan="9" ><strong>General</strong>
1120
+ </td>
1121
+ <td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
1122
+ </td>
1123
+ <td>Portuguese
1124
+ </td>
1125
+ <td>62.12
1126
+ </td>
1127
+ <td>80.13
1128
+ </td>
1129
+ <td>84.95
1130
+ </td>
1131
+ </tr>
1132
+ <tr>
1133
+ <td>Spanish
1134
+ </td>
1135
+ <td>62.45
1136
+ </td>
1137
+ <td>80.05
1138
+ </td>
1139
+ <td>85.08
1140
+ </td>
1141
+ </tr>
1142
+ <tr>
1143
+ <td>Italian
1144
+ </td>
1145
+ <td>61.63
1146
+ </td>
1147
+ <td>80.4
1148
+ </td>
1149
+ <td>85.04
1150
+ </td>
1151
+ </tr>
1152
+ <tr>
1153
+ <td>German
1154
+ </td>
1155
+ <td>60.59
1156
+ </td>
1157
+ <td>79.27
1158
+ </td>
1159
+ <td>84.36
1160
+ </td>
1161
+ </tr>
1162
+ <tr>
1163
+ <td>French
1164
+ </td>
1165
+ <td>62.34
1166
+ </td>
1167
+ <td>79.82
1168
+ </td>
1169
+ <td>84.66
1170
+ </td>
1171
+ </tr>
1172
+ <tr>
1173
+ <td>Hindi
1174
+ </td>
1175
+ <td>50.88
1176
+ </td>
1177
+ <td>74.52
1178
+ </td>
1179
+ <td>80.31
1180
+ </td>
1181
+ </tr>
1182
+ <tr>
1183
+ <td>Thai
1184
+ </td>
1185
+ <td>50.32
1186
+ </td>
1187
+ <td>72.95
1188
+ </td>
1189
+ <td>78.21
1190
+ </td>
1191
+ </tr>
1192
+ </table>
1193
+
1194
+
1195
+
1196
+ ## Responsibility & Safety
1197
+
1198
+ As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
1199
+
1200
+
1201
+
1202
+ * Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
1203
+ * Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
1204
+ * Provide protections for the community to help prevent the misuse of our models.
1205
+
1206
+
1207
+ ### Responsible deployment
1208
+
1209
+ Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more.
1210
+
1211
+
1212
+ #### Llama 3.1 instruct
1213
+
1214
+ Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.
1215
+
1216
+ **Fine-tuning data**
1217
+
1218
+ We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
1219
+
1220
+ **Refusals and Tone**
1221
+
1222
+ Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
1223
+
1224
+
1225
+ #### Llama 3.1 systems
1226
+
1227
+ **Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
1228
+
1229
+ As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
1230
+
1231
+
1232
+ #### New capabilities
1233
+
1234
+ Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases.
1235
+
1236
+ **Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.
1237
+
1238
+ **Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.
1239
+
1240
+
1241
+ ### Evaluations
1242
+
1243
+ We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application.
1244
+
1245
+ Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization.
1246
+
1247
+ **Red teaming**
1248
+
1249
+ For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets.
1250
+
1251
+ We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets.
1252
+
1253
+
1254
+ ### Critical and other risks
1255
+
1256
+ We specifically focused our efforts on mitigating the following critical risk areas:
1257
+
1258
+ **1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness**
1259
+
1260
+ To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons.
1261
+
1262
+
1263
+ **2. Child Safety**
1264
+
1265
+ Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
1266
+
1267
+ **3. Cyber attack enablement**
1268
+
1269
+ Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
1270
+
1271
+ Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention.
1272
+
1273
+ Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more.
1274
+
1275
+
1276
+ ### Community
1277
+
1278
+ Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
1279
+
1280
+ We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
1281
+
1282
+ Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
1283
+
1284
+
1285
+ ## Ethical Considerations and Limitations
1286
+
1287
+ The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
1288
+
1289
+ But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
USE_POLICY.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Llama 3.1 Acceptable Use Policy
2
+
3
+ Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.1. If you
4
+ access or use Llama 3.1, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of
5
+ this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)
6
+
7
+ ## Prohibited Uses
8
+
9
+ We want everyone to use Llama 3.1 safely and responsibly. You agree you will not use, or allow
10
+ others to use, Llama 3.1 to:
11
+
12
+ 1. Violate the law or others’ rights, including to:
13
+ 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
14
+ 1. Violence or terrorism
15
+ 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
16
+ 3. Human trafficking, exploitation, and sexual violence
17
+ 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
18
+ 5. Sexual solicitation
19
+ 6. Any other criminal activity
20
+ 3. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
21
+ 4. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
22
+ 5. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
23
+ 6. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
24
+ 7. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
25
+ 8. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
26
+
27
+ 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.1 related to the following:
28
+ 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
29
+ 2. Guns and illegal weapons (including weapon development)
30
+ 3. Illegal drugs and regulated/controlled substances
31
+ 4. Operation of critical infrastructure, transportation technologies, or heavy machinery
32
+ 5. Self-harm or harm to others, including suicide, cutting, and eating disorders
33
+ 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
34
+
35
+ 3. Intentionally deceive or mislead others, including use of Llama 3.1 related to the following:
36
+ 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
37
+ 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
38
+ 3. Generating, promoting, or further distributing spam
39
+ 4. Impersonating another individual without consent, authorization, or legal right
40
+ 5. Representing that the use of Llama 3.1 or outputs are human-generated
41
+ 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
42
+
43
+ 4. Fail to appropriately disclose to end users any known dangers of your AI system
44
+
45
+ Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation
46
+ of this Policy through one of the following means:
47
+
48
+ * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)
49
+ * Reporting risky content generated by the model: developers.facebook.com/llama_output_feedback
50
+ * Reporting bugs and security concerns: facebook.com/whitehat/info
51
+ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.1: [email protected]
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": [
9
+ 128001,
10
+ 128008,
11
+ 128009
12
+ ],
13
+ "hidden_act": "silu",
14
+ "hidden_size": 8192,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 28672,
17
+ "max_position_embeddings": 131072,
18
+ "mlp_bias": false,
19
+ "model_type": "llama",
20
+ "num_attention_heads": 64,
21
+ "num_hidden_layers": 80,
22
+ "num_key_value_heads": 8,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": {
26
+ "factor": 8.0,
27
+ "low_freq_factor": 1.0,
28
+ "high_freq_factor": 4.0,
29
+ "original_max_position_embeddings": 8192,
30
+ "rope_type": "llama3"
31
+ },
32
+ "rope_theta": 500000.0,
33
+ "tie_word_embeddings": false,
34
+ "torch_dtype": "bfloat16",
35
+ "transformers_version": "4.42.3",
36
+ "use_cache": true,
37
+ "vocab_size": 128256,
38
+ "quantization_config": {
39
+ "quant_method": "exl2",
40
+ "version": "0.1.9",
41
+ "bits": 5.0,
42
+ "head_bits": 6,
43
+ "calibration": {
44
+ "rows": 115,
45
+ "length": 2048,
46
+ "dataset": "(default)"
47
+ }
48
+ }
49
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.42.3"
12
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 141107412992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00030-of-00030.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00030.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00030.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00030.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00030.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00030.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00030.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00030.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00030.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00030.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00030.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00030.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00030.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00030.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00030.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00030.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00030.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00005-of-00030.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00005-of-00030.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00005-of-00030.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00005-of-00030.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00005-of-00030.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00005-of-00030.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00006-of-00030.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00006-of-00030.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00006-of-00030.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00006-of-00030.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00006-of-00030.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00007-of-00030.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00007-of-00030.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00007-of-00030.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00007-of-00030.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00007-of-00030.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00008-of-00030.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00008-of-00030.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00008-of-00030.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00030.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00030.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00008-of-00030.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00008-of-00030.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00009-of-00030.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00009-of-00030.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00009-of-00030.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00009-of-00030.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00009-of-00030.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00009-of-00030.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00009-of-00030.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00009-of-00030.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00009-of-00030.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00010-of-00030.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00010-of-00030.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00010-of-00030.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00010-of-00030.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00010-of-00030.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00010-of-00030.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00011-of-00030.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00011-of-00030.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00011-of-00030.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00011-of-00030.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00011-of-00030.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00012-of-00030.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00030.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00030.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00012-of-00030.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00012-of-00030.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00012-of-00030.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00012-of-00030.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00013-of-00030.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00013-of-00030.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00013-of-00030.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00013-of-00030.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00013-of-00030.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00014-of-00030.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00014-of-00030.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00014-of-00030.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00014-of-00030.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00014-of-00030.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00014-of-00030.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00014-of-00030.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00014-of-00030.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00014-of-00030.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00015-of-00030.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00015-of-00030.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00015-of-00030.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00015-of-00030.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00015-of-00030.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00015-of-00030.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00030.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
323
+ "model.layers.40.input_layernorm.weight": "model-00016-of-00030.safetensors",
324
+ "model.layers.40.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
325
+ "model.layers.40.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
326
+ "model.layers.40.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
327
+ "model.layers.40.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
328
+ "model.layers.40.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
329
+ "model.layers.40.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
330
+ "model.layers.40.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
331
+ "model.layers.40.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
332
+ "model.layers.41.input_layernorm.weight": "model-00016-of-00030.safetensors",
333
+ "model.layers.41.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
334
+ "model.layers.41.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
335
+ "model.layers.41.mlp.up_proj.weight": "model-00016-of-00030.safetensors",
336
+ "model.layers.41.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
337
+ "model.layers.41.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
338
+ "model.layers.41.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
339
+ "model.layers.41.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
340
+ "model.layers.41.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
341
+ "model.layers.42.input_layernorm.weight": "model-00016-of-00030.safetensors",
342
+ "model.layers.42.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
343
+ "model.layers.42.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
344
+ "model.layers.42.mlp.up_proj.weight": "model-00016-of-00030.safetensors",
345
+ "model.layers.42.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
346
+ "model.layers.42.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
347
+ "model.layers.42.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
348
+ "model.layers.42.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
349
+ "model.layers.42.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
350
+ "model.layers.43.input_layernorm.weight": "model-00017-of-00030.safetensors",
351
+ "model.layers.43.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
352
+ "model.layers.43.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
353
+ "model.layers.43.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
354
+ "model.layers.43.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
355
+ "model.layers.43.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
356
+ "model.layers.43.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
357
+ "model.layers.43.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
358
+ "model.layers.43.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
359
+ "model.layers.44.input_layernorm.weight": "model-00017-of-00030.safetensors",
360
+ "model.layers.44.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
361
+ "model.layers.44.mlp.gate_proj.weight": "model-00017-of-00030.safetensors",
362
+ "model.layers.44.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
363
+ "model.layers.44.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
364
+ "model.layers.44.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
365
+ "model.layers.44.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
366
+ "model.layers.44.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
367
+ "model.layers.44.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
368
+ "model.layers.45.input_layernorm.weight": "model-00017-of-00030.safetensors",
369
+ "model.layers.45.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
370
+ "model.layers.45.mlp.gate_proj.weight": "model-00017-of-00030.safetensors",
371
+ "model.layers.45.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
372
+ "model.layers.45.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
373
+ "model.layers.45.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
374
+ "model.layers.45.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
375
+ "model.layers.45.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
376
+ "model.layers.45.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
377
+ "model.layers.46.input_layernorm.weight": "model-00018-of-00030.safetensors",
378
+ "model.layers.46.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
379
+ "model.layers.46.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
380
+ "model.layers.46.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
381
+ "model.layers.46.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
382
+ "model.layers.46.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
383
+ "model.layers.46.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
384
+ "model.layers.46.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
385
+ "model.layers.46.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
386
+ "model.layers.47.input_layernorm.weight": "model-00018-of-00030.safetensors",
387
+ "model.layers.47.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
388
+ "model.layers.47.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
389
+ "model.layers.47.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
390
+ "model.layers.47.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
391
+ "model.layers.47.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
392
+ "model.layers.47.self_attn.o_proj.weight": "model-00018-of-00030.safetensors",
393
+ "model.layers.47.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
394
+ "model.layers.47.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
395
+ "model.layers.48.input_layernorm.weight": "model-00018-of-00030.safetensors",
396
+ "model.layers.48.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
397
+ "model.layers.48.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
398
+ "model.layers.48.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
399
+ "model.layers.48.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
400
+ "model.layers.48.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
401
+ "model.layers.48.self_attn.o_proj.weight": "model-00018-of-00030.safetensors",
402
+ "model.layers.48.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
403
+ "model.layers.48.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
404
+ "model.layers.49.input_layernorm.weight": "model-00019-of-00030.safetensors",
405
+ "model.layers.49.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
406
+ "model.layers.49.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
407
+ "model.layers.49.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
408
+ "model.layers.49.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
409
+ "model.layers.49.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
410
+ "model.layers.49.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
411
+ "model.layers.49.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
412
+ "model.layers.49.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
413
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00030.safetensors",
414
+ "model.layers.5.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
415
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
416
+ "model.layers.5.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
417
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
418
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
419
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00030.safetensors",
420
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
421
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
422
+ "model.layers.50.input_layernorm.weight": "model-00019-of-00030.safetensors",
423
+ "model.layers.50.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
424
+ "model.layers.50.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
425
+ "model.layers.50.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
426
+ "model.layers.50.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
427
+ "model.layers.50.self_attn.k_proj.weight": "model-00019-of-00030.safetensors",
428
+ "model.layers.50.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
429
+ "model.layers.50.self_attn.q_proj.weight": "model-00019-of-00030.safetensors",
430
+ "model.layers.50.self_attn.v_proj.weight": "model-00019-of-00030.safetensors",
431
+ "model.layers.51.input_layernorm.weight": "model-00019-of-00030.safetensors",
432
+ "model.layers.51.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
433
+ "model.layers.51.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
434
+ "model.layers.51.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
435
+ "model.layers.51.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
436
+ "model.layers.51.self_attn.k_proj.weight": "model-00019-of-00030.safetensors",
437
+ "model.layers.51.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
438
+ "model.layers.51.self_attn.q_proj.weight": "model-00019-of-00030.safetensors",
439
+ "model.layers.51.self_attn.v_proj.weight": "model-00019-of-00030.safetensors",
440
+ "model.layers.52.input_layernorm.weight": "model-00020-of-00030.safetensors",
441
+ "model.layers.52.mlp.down_proj.weight": "model-00020-of-00030.safetensors",
442
+ "model.layers.52.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
443
+ "model.layers.52.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
444
+ "model.layers.52.post_attention_layernorm.weight": "model-00020-of-00030.safetensors",
445
+ "model.layers.52.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
446
+ "model.layers.52.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
447
+ "model.layers.52.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
448
+ "model.layers.52.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
449
+ "model.layers.53.input_layernorm.weight": "model-00020-of-00030.safetensors",
450
+ "model.layers.53.mlp.down_proj.weight": "model-00020-of-00030.safetensors",
451
+ "model.layers.53.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
452
+ "model.layers.53.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
453
+ "model.layers.53.post_attention_layernorm.weight": "model-00020-of-00030.safetensors",
454
+ "model.layers.53.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
455
+ "model.layers.53.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
456
+ "model.layers.53.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
457
+ "model.layers.53.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
458
+ "model.layers.54.input_layernorm.weight": "model-00021-of-00030.safetensors",
459
+ "model.layers.54.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
460
+ "model.layers.54.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
461
+ "model.layers.54.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
462
+ "model.layers.54.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
463
+ "model.layers.54.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
464
+ "model.layers.54.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
465
+ "model.layers.54.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
466
+ "model.layers.54.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
467
+ "model.layers.55.input_layernorm.weight": "model-00021-of-00030.safetensors",
468
+ "model.layers.55.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
469
+ "model.layers.55.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
470
+ "model.layers.55.mlp.up_proj.weight": "model-00021-of-00030.safetensors",
471
+ "model.layers.55.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
472
+ "model.layers.55.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
473
+ "model.layers.55.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
474
+ "model.layers.55.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
475
+ "model.layers.55.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
476
+ "model.layers.56.input_layernorm.weight": "model-00021-of-00030.safetensors",
477
+ "model.layers.56.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
478
+ "model.layers.56.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
479
+ "model.layers.56.mlp.up_proj.weight": "model-00021-of-00030.safetensors",
480
+ "model.layers.56.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
481
+ "model.layers.56.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
482
+ "model.layers.56.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
483
+ "model.layers.56.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
484
+ "model.layers.56.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
485
+ "model.layers.57.input_layernorm.weight": "model-00022-of-00030.safetensors",
486
+ "model.layers.57.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
487
+ "model.layers.57.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
488
+ "model.layers.57.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
489
+ "model.layers.57.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
490
+ "model.layers.57.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
491
+ "model.layers.57.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
492
+ "model.layers.57.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
493
+ "model.layers.57.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
494
+ "model.layers.58.input_layernorm.weight": "model-00022-of-00030.safetensors",
495
+ "model.layers.58.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
496
+ "model.layers.58.mlp.gate_proj.weight": "model-00022-of-00030.safetensors",
497
+ "model.layers.58.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
498
+ "model.layers.58.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
499
+ "model.layers.58.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
500
+ "model.layers.58.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
501
+ "model.layers.58.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
502
+ "model.layers.58.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
503
+ "model.layers.59.input_layernorm.weight": "model-00022-of-00030.safetensors",
504
+ "model.layers.59.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
505
+ "model.layers.59.mlp.gate_proj.weight": "model-00022-of-00030.safetensors",
506
+ "model.layers.59.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
507
+ "model.layers.59.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
508
+ "model.layers.59.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
509
+ "model.layers.59.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
510
+ "model.layers.59.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
511
+ "model.layers.59.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
512
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00030.safetensors",
513
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
514
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
515
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
516
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
517
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
518
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00030.safetensors",
519
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
520
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
521
+ "model.layers.60.input_layernorm.weight": "model-00023-of-00030.safetensors",
522
+ "model.layers.60.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
523
+ "model.layers.60.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
524
+ "model.layers.60.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
525
+ "model.layers.60.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
526
+ "model.layers.60.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
527
+ "model.layers.60.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
528
+ "model.layers.60.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
529
+ "model.layers.60.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
530
+ "model.layers.61.input_layernorm.weight": "model-00023-of-00030.safetensors",
531
+ "model.layers.61.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
532
+ "model.layers.61.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
533
+ "model.layers.61.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
534
+ "model.layers.61.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
535
+ "model.layers.61.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
536
+ "model.layers.61.self_attn.o_proj.weight": "model-00023-of-00030.safetensors",
537
+ "model.layers.61.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
538
+ "model.layers.61.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
539
+ "model.layers.62.input_layernorm.weight": "model-00023-of-00030.safetensors",
540
+ "model.layers.62.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
541
+ "model.layers.62.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
542
+ "model.layers.62.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
543
+ "model.layers.62.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
544
+ "model.layers.62.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
545
+ "model.layers.62.self_attn.o_proj.weight": "model-00023-of-00030.safetensors",
546
+ "model.layers.62.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
547
+ "model.layers.62.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
548
+ "model.layers.63.input_layernorm.weight": "model-00024-of-00030.safetensors",
549
+ "model.layers.63.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
550
+ "model.layers.63.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
551
+ "model.layers.63.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
552
+ "model.layers.63.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
553
+ "model.layers.63.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
554
+ "model.layers.63.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
555
+ "model.layers.63.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
556
+ "model.layers.63.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
557
+ "model.layers.64.input_layernorm.weight": "model-00024-of-00030.safetensors",
558
+ "model.layers.64.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
559
+ "model.layers.64.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
560
+ "model.layers.64.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
561
+ "model.layers.64.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
562
+ "model.layers.64.self_attn.k_proj.weight": "model-00024-of-00030.safetensors",
563
+ "model.layers.64.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
564
+ "model.layers.64.self_attn.q_proj.weight": "model-00024-of-00030.safetensors",
565
+ "model.layers.64.self_attn.v_proj.weight": "model-00024-of-00030.safetensors",
566
+ "model.layers.65.input_layernorm.weight": "model-00024-of-00030.safetensors",
567
+ "model.layers.65.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
568
+ "model.layers.65.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
569
+ "model.layers.65.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
570
+ "model.layers.65.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
571
+ "model.layers.65.self_attn.k_proj.weight": "model-00024-of-00030.safetensors",
572
+ "model.layers.65.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
573
+ "model.layers.65.self_attn.q_proj.weight": "model-00024-of-00030.safetensors",
574
+ "model.layers.65.self_attn.v_proj.weight": "model-00024-of-00030.safetensors",
575
+ "model.layers.66.input_layernorm.weight": "model-00025-of-00030.safetensors",
576
+ "model.layers.66.mlp.down_proj.weight": "model-00025-of-00030.safetensors",
577
+ "model.layers.66.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
578
+ "model.layers.66.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
579
+ "model.layers.66.post_attention_layernorm.weight": "model-00025-of-00030.safetensors",
580
+ "model.layers.66.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
581
+ "model.layers.66.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
582
+ "model.layers.66.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
583
+ "model.layers.66.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
584
+ "model.layers.67.input_layernorm.weight": "model-00025-of-00030.safetensors",
585
+ "model.layers.67.mlp.down_proj.weight": "model-00025-of-00030.safetensors",
586
+ "model.layers.67.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
587
+ "model.layers.67.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
588
+ "model.layers.67.post_attention_layernorm.weight": "model-00025-of-00030.safetensors",
589
+ "model.layers.67.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
590
+ "model.layers.67.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
591
+ "model.layers.67.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
592
+ "model.layers.67.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
593
+ "model.layers.68.input_layernorm.weight": "model-00026-of-00030.safetensors",
594
+ "model.layers.68.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
595
+ "model.layers.68.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
596
+ "model.layers.68.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
597
+ "model.layers.68.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
598
+ "model.layers.68.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
599
+ "model.layers.68.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
600
+ "model.layers.68.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
601
+ "model.layers.68.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
602
+ "model.layers.69.input_layernorm.weight": "model-00026-of-00030.safetensors",
603
+ "model.layers.69.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
604
+ "model.layers.69.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
605
+ "model.layers.69.mlp.up_proj.weight": "model-00026-of-00030.safetensors",
606
+ "model.layers.69.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
607
+ "model.layers.69.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
608
+ "model.layers.69.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
609
+ "model.layers.69.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
610
+ "model.layers.69.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
611
+ "model.layers.7.input_layernorm.weight": "model-00004-of-00030.safetensors",
612
+ "model.layers.7.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
613
+ "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
614
+ "model.layers.7.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
615
+ "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
616
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
617
+ "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
618
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
619
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
620
+ "model.layers.70.input_layernorm.weight": "model-00026-of-00030.safetensors",
621
+ "model.layers.70.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
622
+ "model.layers.70.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
623
+ "model.layers.70.mlp.up_proj.weight": "model-00026-of-00030.safetensors",
624
+ "model.layers.70.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
625
+ "model.layers.70.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
626
+ "model.layers.70.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
627
+ "model.layers.70.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
628
+ "model.layers.70.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
629
+ "model.layers.71.input_layernorm.weight": "model-00027-of-00030.safetensors",
630
+ "model.layers.71.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
631
+ "model.layers.71.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
632
+ "model.layers.71.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
633
+ "model.layers.71.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
634
+ "model.layers.71.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
635
+ "model.layers.71.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
636
+ "model.layers.71.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
637
+ "model.layers.71.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
638
+ "model.layers.72.input_layernorm.weight": "model-00027-of-00030.safetensors",
639
+ "model.layers.72.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
640
+ "model.layers.72.mlp.gate_proj.weight": "model-00027-of-00030.safetensors",
641
+ "model.layers.72.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
642
+ "model.layers.72.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
643
+ "model.layers.72.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
644
+ "model.layers.72.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
645
+ "model.layers.72.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
646
+ "model.layers.72.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
647
+ "model.layers.73.input_layernorm.weight": "model-00027-of-00030.safetensors",
648
+ "model.layers.73.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
649
+ "model.layers.73.mlp.gate_proj.weight": "model-00027-of-00030.safetensors",
650
+ "model.layers.73.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
651
+ "model.layers.73.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
652
+ "model.layers.73.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
653
+ "model.layers.73.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
654
+ "model.layers.73.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
655
+ "model.layers.73.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
656
+ "model.layers.74.input_layernorm.weight": "model-00028-of-00030.safetensors",
657
+ "model.layers.74.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
658
+ "model.layers.74.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
659
+ "model.layers.74.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
660
+ "model.layers.74.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
661
+ "model.layers.74.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
662
+ "model.layers.74.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
663
+ "model.layers.74.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
664
+ "model.layers.74.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
665
+ "model.layers.75.input_layernorm.weight": "model-00028-of-00030.safetensors",
666
+ "model.layers.75.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
667
+ "model.layers.75.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
668
+ "model.layers.75.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
669
+ "model.layers.75.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
670
+ "model.layers.75.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
671
+ "model.layers.75.self_attn.o_proj.weight": "model-00028-of-00030.safetensors",
672
+ "model.layers.75.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
673
+ "model.layers.75.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
674
+ "model.layers.76.input_layernorm.weight": "model-00028-of-00030.safetensors",
675
+ "model.layers.76.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
676
+ "model.layers.76.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
677
+ "model.layers.76.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
678
+ "model.layers.76.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
679
+ "model.layers.76.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
680
+ "model.layers.76.self_attn.o_proj.weight": "model-00028-of-00030.safetensors",
681
+ "model.layers.76.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
682
+ "model.layers.76.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
683
+ "model.layers.77.input_layernorm.weight": "model-00029-of-00030.safetensors",
684
+ "model.layers.77.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
685
+ "model.layers.77.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
686
+ "model.layers.77.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
687
+ "model.layers.77.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
688
+ "model.layers.77.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
689
+ "model.layers.77.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
690
+ "model.layers.77.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
691
+ "model.layers.77.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
692
+ "model.layers.78.input_layernorm.weight": "model-00029-of-00030.safetensors",
693
+ "model.layers.78.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
694
+ "model.layers.78.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
695
+ "model.layers.78.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
696
+ "model.layers.78.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
697
+ "model.layers.78.self_attn.k_proj.weight": "model-00029-of-00030.safetensors",
698
+ "model.layers.78.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
699
+ "model.layers.78.self_attn.q_proj.weight": "model-00029-of-00030.safetensors",
700
+ "model.layers.78.self_attn.v_proj.weight": "model-00029-of-00030.safetensors",
701
+ "model.layers.79.input_layernorm.weight": "model-00029-of-00030.safetensors",
702
+ "model.layers.79.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
703
+ "model.layers.79.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
704
+ "model.layers.79.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
705
+ "model.layers.79.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
706
+ "model.layers.79.self_attn.k_proj.weight": "model-00029-of-00030.safetensors",
707
+ "model.layers.79.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
708
+ "model.layers.79.self_attn.q_proj.weight": "model-00029-of-00030.safetensors",
709
+ "model.layers.79.self_attn.v_proj.weight": "model-00029-of-00030.safetensors",
710
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00030.safetensors",
711
+ "model.layers.8.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
712
+ "model.layers.8.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
713
+ "model.layers.8.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
714
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
715
+ "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00030.safetensors",
716
+ "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
717
+ "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00030.safetensors",
718
+ "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00030.safetensors",
719
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00030.safetensors",
720
+ "model.layers.9.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
721
+ "model.layers.9.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
722
+ "model.layers.9.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
723
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
724
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00030.safetensors",
725
+ "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
726
+ "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00030.safetensors",
727
+ "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00030.safetensors",
728
+ "model.norm.weight": "model-00029-of-00030.safetensors"
729
+ }
730
+ }
output-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:591f6995ddd7a1049df704d5abb12bfd97e7d04274c2210a1e0e4cb02343180c
3
+ size 8584406430
output-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9dc17d0dc6363b20e8f7a80c10b85a65301a81e8e92e5112a3c304ca42b73af
3
+ size 8571680276
output-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa42a57238841c42d0a6fa16d5148d96c951701a8df787b541de169b699fe5f8
3
+ size 8581757364
output-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:579e2aa97ae1eb46689f0126b64966fd9a2a6b2aea0bee5eae7d4e4823d257e8
3
+ size 8458943256
output-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1823e7c148379751989f57bc4ee61bff9f7c77673445743516f5db589ad57746
3
+ size 8477931368
output-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:146b288e722f728ab9a7b38a2df33dd3eface4ed930b20def9baafb65a4aa052
3
+ size 3036875044
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }