banghua commited on
Commit
7c847eb
·
verified ·
1 Parent(s): 49498a7

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ pytorch_model.bin00 filter=lfs diff=lfs merge=lfs -text
37
+ pytorch_model.bin01 filter=lfs diff=lfs merge=lfs -text
38
+ pytorch_model.bin02 filter=lfs diff=lfs merge=lfs -text
39
+ pytorch_model.bin03 filter=lfs diff=lfs merge=lfs -text
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step400
pytorch_model.bin00 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84688ba4575f263eb196a9ea53b74575d0f125c11a7debf0ce09b1416756fd4c
3
+ size 20000000000
pytorch_model.bin01 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dcdb12d08ebbda10c423f933c2127c7677d6d4c50a20ef34f9f5950fdea5543
3
+ size 20000000000
pytorch_model.bin02 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ee36326dfc1db3d192cc9be38c992c6fedfe256205eef81a5d726d81ec8fa60
3
+ size 20000000000
pytorch_model.bin03 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8226804c339d0a8f3fdbb0930f8acdb18453240b3a6362074bfff7fdf6439f22
3
+ size 8778066425
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3325e5522dd0e76d77f51b712ce830a70a2c478865eb15a68ffe9a623451e309
3
+ size 21687
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c4467a2ae97d673892c18c7cac38b25e4f8a49eb6e46b80eab84253fda3acc3
3
+ size 21687
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3703baeed556d24505246fa48122667c1e210a3e1bb2b9b466b0f66f64fc4f37
3
+ size 21687
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd5325bc5a3ef2f0a16edfe8622ca2f8e7df14fcc0770b7bae8fbd49c7f36ea8
3
+ size 21687
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca5fbe88c50d42730361a56567ac258872b50bbd20970599ef9787d6a3d59b15
3
+ size 21687
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58b05009ec6cb6e915e03c2b655bb218080c7ee85bd7d0d49bd9579df367b67b
3
+ size 21687
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb508ceb56e538bdafb465e4213db07bdcdf36d2d54b795f92df0cf54e74beb0
3
+ size 21687
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa375275d7d4f35c68b510c479335930f40f6c6913040807ac747cd7580a1493
3
+ size 21687
trainer_state.json ADDED
@@ -0,0 +1,2493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.0441503524780273,
3
+ "best_model_checkpoint": "rm-ckpt-reward-p100-s0/checkpoint-400",
4
+ "epoch": 0.4020504573323952,
5
+ "eval_steps": 50,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0,
14
+ "loss": 1.447,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 7.525749891599529e-06,
20
+ "loss": 1.4166,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 1.192803136799156e-05,
26
+ "loss": 1.417,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "learning_rate": 1.5051499783199057e-05,
32
+ "loss": 1.3947,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.0,
37
+ "learning_rate": 1.7474250108400467e-05,
38
+ "loss": 1.3739,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 1.945378125959109e-05,
44
+ "loss": 1.3352,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 2.1127451000356418e-05,
50
+ "loss": 1.3181,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 2.2577249674798584e-05,
56
+ "loss": 1.3712,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 2.385606273598312e-05,
62
+ "loss": 1.3858,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.01,
67
+ "learning_rate": 2.4999999999999998e-05,
68
+ "loss": 1.4424,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.01,
73
+ "learning_rate": 2.6034817128955623e-05,
74
+ "loss": 1.3381,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.01,
79
+ "learning_rate": 2.6979531151190617e-05,
80
+ "loss": 1.2937,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.01,
85
+ "learning_rate": 2.7848583807670913e-05,
86
+ "loss": 1.3021,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.01,
91
+ "learning_rate": 2.8653200891955945e-05,
92
+ "loss": 1.274,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.01,
97
+ "learning_rate": 2.940228147639203e-05,
98
+ "loss": 1.2896,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.01,
103
+ "learning_rate": 3.0102999566398115e-05,
104
+ "loss": 1.19,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.02,
109
+ "learning_rate": 3.076122303445685e-05,
110
+ "loss": 1.1889,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.02,
115
+ "learning_rate": 3.1381812627582646e-05,
116
+ "loss": 1.2028,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.02,
121
+ "learning_rate": 3.1968840023820715e-05,
122
+ "loss": 1.2259,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.02,
127
+ "learning_rate": 3.2525749891599525e-05,
128
+ "loss": 1.1971,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.02,
133
+ "learning_rate": 3.305548236834798e-05,
134
+ "loss": 1.1972,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.02,
139
+ "learning_rate": 3.3560567020555153e-05,
140
+ "loss": 1.2193,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.02,
145
+ "learning_rate": 3.404319590043982e-05,
146
+ "loss": 1.1354,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.02,
151
+ "learning_rate": 3.450528104279015e-05,
152
+ "loss": 1.1434,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.02,
157
+ "learning_rate": 3.4948500216800935e-05,
158
+ "loss": 1.1237,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.02,
163
+ "learning_rate": 3.537433369927044e-05,
164
+ "loss": 1.1227,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.02,
169
+ "learning_rate": 3.578409410397468e-05,
170
+ "loss": 1.1554,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.03,
175
+ "learning_rate": 3.6178950783555475e-05,
176
+ "loss": 1.131,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.03,
181
+ "learning_rate": 3.65599499474739e-05,
182
+ "loss": 1.2016,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.03,
187
+ "learning_rate": 3.6928031367991554e-05,
188
+ "loss": 1.0968,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.03,
193
+ "learning_rate": 3.728404234585681e-05,
194
+ "loss": 1.0713,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.03,
199
+ "learning_rate": 3.762874945799765e-05,
200
+ "loss": 1.1537,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.03,
205
+ "learning_rate": 3.796284849694718e-05,
206
+ "loss": 1.0856,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.03,
211
+ "learning_rate": 3.8286972926056376e-05,
212
+ "loss": 1.08,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.03,
217
+ "learning_rate": 3.8601701108756885e-05,
218
+ "loss": 1.067,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.03,
223
+ "learning_rate": 3.890756251918218e-05,
224
+ "loss": 1.1298,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.03,
229
+ "learning_rate": 3.920504310167487e-05,
230
+ "loss": 1.0986,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.03,
235
+ "learning_rate": 3.949458991542025e-05,
236
+ "loss": 1.0649,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.04,
241
+ "learning_rate": 3.977661517566247e-05,
242
+ "loss": 1.0582,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.04,
247
+ "learning_rate": 4.005149978319905e-05,
248
+ "loss": 1.1037,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.04,
253
+ "learning_rate": 4.031959641799338e-05,
254
+ "loss": 1.052,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.04,
259
+ "learning_rate": 4.058123225994751e-05,
260
+ "loss": 1.1048,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.04,
265
+ "learning_rate": 4.0836711389489654e-05,
266
+ "loss": 1.0817,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.04,
271
+ "learning_rate": 4.108631691215468e-05,
272
+ "loss": 1.0712,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.04,
277
+ "learning_rate": 4.133031284438358e-05,
278
+ "loss": 1.0865,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.04,
283
+ "learning_rate": 4.156894579203935e-05,
284
+ "loss": 1.0837,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.04,
289
+ "learning_rate": 4.180244644839293e-05,
290
+ "loss": 1.0915,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.04,
295
+ "learning_rate": 4.203103093438968e-05,
296
+ "loss": 1.0845,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.04,
301
+ "learning_rate": 4.2254902000712836e-05,
302
+ "loss": 1.0425,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.05,
307
+ "learning_rate": 4.247425010840046e-05,
308
+ "loss": 1.0479,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.05,
313
+ "eval_val_accuracy": 0.6191666666666666,
314
+ "eval_val_loss": 1.1118515729904175,
315
+ "eval_val_runtime": 913.0126,
316
+ "eval_val_samples_per_second": 1.095,
317
+ "eval_val_steps_per_second": 0.137,
318
+ "step": 50
319
+ },
320
+ {
321
+ "epoch": 0.05,
322
+ "learning_rate": 4.2689254402448405e-05,
323
+ "loss": 1.079,
324
+ "step": 51
325
+ },
326
+ {
327
+ "epoch": 0.05,
328
+ "learning_rate": 4.290008359086998e-05,
329
+ "loss": 1.0855,
330
+ "step": 52
331
+ },
332
+ {
333
+ "epoch": 0.05,
334
+ "learning_rate": 4.310689674001973e-05,
335
+ "loss": 1.084,
336
+ "step": 53
337
+ },
338
+ {
339
+ "epoch": 0.05,
340
+ "learning_rate": 4.330984399557421e-05,
341
+ "loss": 1.0787,
342
+ "step": 54
343
+ },
344
+ {
345
+ "epoch": 0.05,
346
+ "learning_rate": 4.350906723735609e-05,
347
+ "loss": 1.1333,
348
+ "step": 55
349
+ },
350
+ {
351
+ "epoch": 0.05,
352
+ "learning_rate": 4.370470067515501e-05,
353
+ "loss": 1.1016,
354
+ "step": 56
355
+ },
356
+ {
357
+ "epoch": 0.06,
358
+ "learning_rate": 4.3896871391812285e-05,
359
+ "loss": 1.0716,
360
+ "step": 57
361
+ },
362
+ {
363
+ "epoch": 0.06,
364
+ "learning_rate": 4.408569983907343e-05,
365
+ "loss": 1.0861,
366
+ "step": 58
367
+ },
368
+ {
369
+ "epoch": 0.06,
370
+ "learning_rate": 4.42713002910536e-05,
371
+ "loss": 1.0583,
372
+ "step": 59
373
+ },
374
+ {
375
+ "epoch": 0.06,
376
+ "learning_rate": 4.445378125959108e-05,
377
+ "loss": 1.0793,
378
+ "step": 60
379
+ },
380
+ {
381
+ "epoch": 0.06,
382
+ "learning_rate": 4.463324587526917e-05,
383
+ "loss": 1.0761,
384
+ "step": 61
385
+ },
386
+ {
387
+ "epoch": 0.06,
388
+ "learning_rate": 4.4809792237456346e-05,
389
+ "loss": 1.0995,
390
+ "step": 62
391
+ },
392
+ {
393
+ "epoch": 0.06,
394
+ "learning_rate": 4.498351373633954e-05,
395
+ "loss": 1.0915,
396
+ "step": 63
397
+ },
398
+ {
399
+ "epoch": 0.06,
400
+ "learning_rate": 4.515449934959717e-05,
401
+ "loss": 1.0415,
402
+ "step": 64
403
+ },
404
+ {
405
+ "epoch": 0.06,
406
+ "learning_rate": 4.532283391607138e-05,
407
+ "loss": 1.0429,
408
+ "step": 65
409
+ },
410
+ {
411
+ "epoch": 0.06,
412
+ "learning_rate": 4.548859838854671e-05,
413
+ "loss": 1.0886,
414
+ "step": 66
415
+ },
416
+ {
417
+ "epoch": 0.07,
418
+ "learning_rate": 4.565187006752065e-05,
419
+ "loss": 1.0332,
420
+ "step": 67
421
+ },
422
+ {
423
+ "epoch": 0.07,
424
+ "learning_rate": 4.581272281765591e-05,
425
+ "loss": 1.0271,
426
+ "step": 68
427
+ },
428
+ {
429
+ "epoch": 0.07,
430
+ "learning_rate": 4.597122726843138e-05,
431
+ "loss": 1.0591,
432
+ "step": 69
433
+ },
434
+ {
435
+ "epoch": 0.07,
436
+ "learning_rate": 4.612745100035642e-05,
437
+ "loss": 1.023,
438
+ "step": 70
439
+ },
440
+ {
441
+ "epoch": 0.07,
442
+ "learning_rate": 4.628145871797688e-05,
443
+ "loss": 1.0665,
444
+ "step": 71
445
+ },
446
+ {
447
+ "epoch": 0.07,
448
+ "learning_rate": 4.643331241078171e-05,
449
+ "loss": 1.064,
450
+ "step": 72
451
+ },
452
+ {
453
+ "epoch": 0.07,
454
+ "learning_rate": 4.658307150301139e-05,
455
+ "loss": 1.1339,
456
+ "step": 73
457
+ },
458
+ {
459
+ "epoch": 0.07,
460
+ "learning_rate": 4.67307929932744e-05,
461
+ "loss": 1.0609,
462
+ "step": 74
463
+ },
464
+ {
465
+ "epoch": 0.07,
466
+ "learning_rate": 4.687653158479249e-05,
467
+ "loss": 1.1128,
468
+ "step": 75
469
+ },
470
+ {
471
+ "epoch": 0.07,
472
+ "learning_rate": 4.702033980701978e-05,
473
+ "loss": 1.0733,
474
+ "step": 76
475
+ },
476
+ {
477
+ "epoch": 0.07,
478
+ "learning_rate": 4.716226812931204e-05,
479
+ "loss": 1.0761,
480
+ "step": 77
481
+ },
482
+ {
483
+ "epoch": 0.08,
484
+ "learning_rate": 4.7302365067262006e-05,
485
+ "loss": 1.0609,
486
+ "step": 78
487
+ },
488
+ {
489
+ "epoch": 0.08,
490
+ "learning_rate": 4.744067728226103e-05,
491
+ "loss": 1.0306,
492
+ "step": 79
493
+ },
494
+ {
495
+ "epoch": 0.08,
496
+ "learning_rate": 4.757724967479858e-05,
497
+ "loss": 1.0882,
498
+ "step": 80
499
+ },
500
+ {
501
+ "epoch": 0.08,
502
+ "learning_rate": 4.771212547196624e-05,
503
+ "loss": 1.0556,
504
+ "step": 81
505
+ },
506
+ {
507
+ "epoch": 0.08,
508
+ "learning_rate": 4.7845346309592914e-05,
509
+ "loss": 1.0455,
510
+ "step": 82
511
+ },
512
+ {
513
+ "epoch": 0.08,
514
+ "learning_rate": 4.7976952309401844e-05,
515
+ "loss": 1.0653,
516
+ "step": 83
517
+ },
518
+ {
519
+ "epoch": 0.08,
520
+ "learning_rate": 4.810698215154703e-05,
521
+ "loss": 1.0128,
522
+ "step": 84
523
+ },
524
+ {
525
+ "epoch": 0.08,
526
+ "learning_rate": 4.823547314285732e-05,
527
+ "loss": 1.0739,
528
+ "step": 85
529
+ },
530
+ {
531
+ "epoch": 0.08,
532
+ "learning_rate": 4.836246128108918e-05,
533
+ "loss": 1.161,
534
+ "step": 86
535
+ },
536
+ {
537
+ "epoch": 0.08,
538
+ "learning_rate": 4.8487981315465456e-05,
539
+ "loss": 1.0686,
540
+ "step": 87
541
+ },
542
+ {
543
+ "epoch": 0.09,
544
+ "learning_rate": 4.8612066803754214e-05,
545
+ "loss": 1.0785,
546
+ "step": 88
547
+ },
548
+ {
549
+ "epoch": 0.09,
550
+ "learning_rate": 4.873475016612281e-05,
551
+ "loss": 1.0362,
552
+ "step": 89
553
+ },
554
+ {
555
+ "epoch": 0.09,
556
+ "learning_rate": 4.885606273598312e-05,
557
+ "loss": 1.0775,
558
+ "step": 90
559
+ },
560
+ {
561
+ "epoch": 0.09,
562
+ "learning_rate": 4.897603480802733e-05,
563
+ "loss": 1.0445,
564
+ "step": 91
565
+ },
566
+ {
567
+ "epoch": 0.09,
568
+ "learning_rate": 4.909469568363888e-05,
569
+ "loss": 1.0452,
570
+ "step": 92
571
+ },
572
+ {
573
+ "epoch": 0.09,
574
+ "learning_rate": 4.9212073713848375e-05,
575
+ "loss": 1.0687,
576
+ "step": 93
577
+ },
578
+ {
579
+ "epoch": 0.09,
580
+ "learning_rate": 4.932819633999246e-05,
581
+ "loss": 1.0775,
582
+ "step": 94
583
+ },
584
+ {
585
+ "epoch": 0.09,
586
+ "learning_rate": 4.9443090132221186e-05,
587
+ "loss": 1.0239,
588
+ "step": 95
589
+ },
590
+ {
591
+ "epoch": 0.09,
592
+ "learning_rate": 4.9556780825989205e-05,
593
+ "loss": 1.0532,
594
+ "step": 96
595
+ },
596
+ {
597
+ "epoch": 0.09,
598
+ "learning_rate": 4.9669293356656114e-05,
599
+ "loss": 1.0628,
600
+ "step": 97
601
+ },
602
+ {
603
+ "epoch": 0.1,
604
+ "learning_rate": 4.978065189231237e-05,
605
+ "loss": 1.0562,
606
+ "step": 98
607
+ },
608
+ {
609
+ "epoch": 0.1,
610
+ "learning_rate": 4.989087986493874e-05,
611
+ "loss": 1.0404,
612
+ "step": 99
613
+ },
614
+ {
615
+ "epoch": 0.1,
616
+ "learning_rate": 4.9999999999999996e-05,
617
+ "loss": 1.0711,
618
+ "step": 100
619
+ },
620
+ {
621
+ "epoch": 0.1,
622
+ "eval_val_accuracy": 0.6268333333333334,
623
+ "eval_val_loss": 1.0909922122955322,
624
+ "eval_val_runtime": 906.1076,
625
+ "eval_val_samples_per_second": 1.104,
626
+ "eval_val_steps_per_second": 0.138,
627
+ "step": 100
628
+ },
629
+ {
630
+ "epoch": 0.1,
631
+ "learning_rate": 1e-05,
632
+ "loss": 1.0378,
633
+ "step": 101
634
+ },
635
+ {
636
+ "epoch": 0.1,
637
+ "learning_rate": 1e-05,
638
+ "loss": 1.0447,
639
+ "step": 102
640
+ },
641
+ {
642
+ "epoch": 0.1,
643
+ "learning_rate": 1e-05,
644
+ "loss": 1.0323,
645
+ "step": 103
646
+ },
647
+ {
648
+ "epoch": 0.1,
649
+ "learning_rate": 1e-05,
650
+ "loss": 1.0135,
651
+ "step": 104
652
+ },
653
+ {
654
+ "epoch": 0.1,
655
+ "learning_rate": 1e-05,
656
+ "loss": 1.0168,
657
+ "step": 105
658
+ },
659
+ {
660
+ "epoch": 0.1,
661
+ "learning_rate": 1e-05,
662
+ "loss": 1.0689,
663
+ "step": 106
664
+ },
665
+ {
666
+ "epoch": 0.1,
667
+ "learning_rate": 1e-05,
668
+ "loss": 1.0389,
669
+ "step": 107
670
+ },
671
+ {
672
+ "epoch": 0.1,
673
+ "learning_rate": 1e-05,
674
+ "loss": 1.0665,
675
+ "step": 108
676
+ },
677
+ {
678
+ "epoch": 0.11,
679
+ "learning_rate": 1e-05,
680
+ "loss": 1.0668,
681
+ "step": 109
682
+ },
683
+ {
684
+ "epoch": 0.11,
685
+ "learning_rate": 1e-05,
686
+ "loss": 1.0728,
687
+ "step": 110
688
+ },
689
+ {
690
+ "epoch": 0.11,
691
+ "learning_rate": 1e-05,
692
+ "loss": 1.0747,
693
+ "step": 111
694
+ },
695
+ {
696
+ "epoch": 0.11,
697
+ "learning_rate": 1e-05,
698
+ "loss": 1.0314,
699
+ "step": 112
700
+ },
701
+ {
702
+ "epoch": 0.11,
703
+ "learning_rate": 1e-05,
704
+ "loss": 1.1075,
705
+ "step": 113
706
+ },
707
+ {
708
+ "epoch": 0.11,
709
+ "learning_rate": 1e-05,
710
+ "loss": 1.0645,
711
+ "step": 114
712
+ },
713
+ {
714
+ "epoch": 0.11,
715
+ "learning_rate": 1e-05,
716
+ "loss": 1.0528,
717
+ "step": 115
718
+ },
719
+ {
720
+ "epoch": 0.11,
721
+ "learning_rate": 1e-05,
722
+ "loss": 1.0783,
723
+ "step": 116
724
+ },
725
+ {
726
+ "epoch": 0.11,
727
+ "learning_rate": 1e-05,
728
+ "loss": 1.0524,
729
+ "step": 117
730
+ },
731
+ {
732
+ "epoch": 0.11,
733
+ "learning_rate": 1e-05,
734
+ "loss": 1.0451,
735
+ "step": 118
736
+ },
737
+ {
738
+ "epoch": 0.12,
739
+ "learning_rate": 1e-05,
740
+ "loss": 1.0281,
741
+ "step": 119
742
+ },
743
+ {
744
+ "epoch": 0.12,
745
+ "learning_rate": 1e-05,
746
+ "loss": 1.0829,
747
+ "step": 120
748
+ },
749
+ {
750
+ "epoch": 0.12,
751
+ "learning_rate": 1e-05,
752
+ "loss": 1.0088,
753
+ "step": 121
754
+ },
755
+ {
756
+ "epoch": 0.12,
757
+ "learning_rate": 1e-05,
758
+ "loss": 1.0634,
759
+ "step": 122
760
+ },
761
+ {
762
+ "epoch": 0.12,
763
+ "learning_rate": 1e-05,
764
+ "loss": 1.0836,
765
+ "step": 123
766
+ },
767
+ {
768
+ "epoch": 0.12,
769
+ "learning_rate": 1e-05,
770
+ "loss": 1.08,
771
+ "step": 124
772
+ },
773
+ {
774
+ "epoch": 0.12,
775
+ "learning_rate": 1e-05,
776
+ "loss": 1.0523,
777
+ "step": 125
778
+ },
779
+ {
780
+ "epoch": 0.12,
781
+ "learning_rate": 1e-05,
782
+ "loss": 1.0564,
783
+ "step": 126
784
+ },
785
+ {
786
+ "epoch": 0.12,
787
+ "learning_rate": 1e-05,
788
+ "loss": 1.038,
789
+ "step": 127
790
+ },
791
+ {
792
+ "epoch": 0.12,
793
+ "learning_rate": 1e-05,
794
+ "loss": 1.0494,
795
+ "step": 128
796
+ },
797
+ {
798
+ "epoch": 0.13,
799
+ "learning_rate": 1e-05,
800
+ "loss": 1.0329,
801
+ "step": 129
802
+ },
803
+ {
804
+ "epoch": 0.13,
805
+ "learning_rate": 1e-05,
806
+ "loss": 1.0806,
807
+ "step": 130
808
+ },
809
+ {
810
+ "epoch": 0.13,
811
+ "learning_rate": 1e-05,
812
+ "loss": 1.0763,
813
+ "step": 131
814
+ },
815
+ {
816
+ "epoch": 0.13,
817
+ "learning_rate": 1e-05,
818
+ "loss": 1.0504,
819
+ "step": 132
820
+ },
821
+ {
822
+ "epoch": 0.13,
823
+ "learning_rate": 1e-05,
824
+ "loss": 1.044,
825
+ "step": 133
826
+ },
827
+ {
828
+ "epoch": 0.13,
829
+ "learning_rate": 1e-05,
830
+ "loss": 0.9895,
831
+ "step": 134
832
+ },
833
+ {
834
+ "epoch": 0.13,
835
+ "learning_rate": 1e-05,
836
+ "loss": 1.0688,
837
+ "step": 135
838
+ },
839
+ {
840
+ "epoch": 0.13,
841
+ "learning_rate": 1e-05,
842
+ "loss": 1.0471,
843
+ "step": 136
844
+ },
845
+ {
846
+ "epoch": 0.13,
847
+ "learning_rate": 1e-05,
848
+ "loss": 1.0711,
849
+ "step": 137
850
+ },
851
+ {
852
+ "epoch": 0.13,
853
+ "learning_rate": 1e-05,
854
+ "loss": 1.0506,
855
+ "step": 138
856
+ },
857
+ {
858
+ "epoch": 0.14,
859
+ "learning_rate": 1e-05,
860
+ "loss": 1.0789,
861
+ "step": 139
862
+ },
863
+ {
864
+ "epoch": 0.14,
865
+ "learning_rate": 1e-05,
866
+ "loss": 1.0888,
867
+ "step": 140
868
+ },
869
+ {
870
+ "epoch": 0.14,
871
+ "learning_rate": 1e-05,
872
+ "loss": 1.0746,
873
+ "step": 141
874
+ },
875
+ {
876
+ "epoch": 0.14,
877
+ "learning_rate": 1e-05,
878
+ "loss": 1.1229,
879
+ "step": 142
880
+ },
881
+ {
882
+ "epoch": 0.14,
883
+ "learning_rate": 1e-05,
884
+ "loss": 1.0826,
885
+ "step": 143
886
+ },
887
+ {
888
+ "epoch": 0.14,
889
+ "learning_rate": 1e-05,
890
+ "loss": 1.0504,
891
+ "step": 144
892
+ },
893
+ {
894
+ "epoch": 0.14,
895
+ "learning_rate": 1e-05,
896
+ "loss": 1.0311,
897
+ "step": 145
898
+ },
899
+ {
900
+ "epoch": 0.14,
901
+ "learning_rate": 1e-05,
902
+ "loss": 1.0456,
903
+ "step": 146
904
+ },
905
+ {
906
+ "epoch": 0.14,
907
+ "learning_rate": 1e-05,
908
+ "loss": 1.0097,
909
+ "step": 147
910
+ },
911
+ {
912
+ "epoch": 0.14,
913
+ "learning_rate": 1e-05,
914
+ "loss": 1.0282,
915
+ "step": 148
916
+ },
917
+ {
918
+ "epoch": 0.14,
919
+ "learning_rate": 1e-05,
920
+ "loss": 1.0507,
921
+ "step": 149
922
+ },
923
+ {
924
+ "epoch": 0.15,
925
+ "learning_rate": 1e-05,
926
+ "loss": 1.054,
927
+ "step": 150
928
+ },
929
+ {
930
+ "epoch": 0.15,
931
+ "eval_val_accuracy": 0.626,
932
+ "eval_val_loss": 1.0630038976669312,
933
+ "eval_val_runtime": 907.7978,
934
+ "eval_val_samples_per_second": 1.102,
935
+ "eval_val_steps_per_second": 0.138,
936
+ "step": 150
937
+ },
938
+ {
939
+ "epoch": 0.15,
940
+ "learning_rate": 1e-05,
941
+ "loss": 1.0165,
942
+ "step": 151
943
+ },
944
+ {
945
+ "epoch": 0.15,
946
+ "learning_rate": 1e-05,
947
+ "loss": 0.9992,
948
+ "step": 152
949
+ },
950
+ {
951
+ "epoch": 0.15,
952
+ "learning_rate": 1e-05,
953
+ "loss": 1.045,
954
+ "step": 153
955
+ },
956
+ {
957
+ "epoch": 0.15,
958
+ "learning_rate": 1e-05,
959
+ "loss": 1.0378,
960
+ "step": 154
961
+ },
962
+ {
963
+ "epoch": 0.15,
964
+ "learning_rate": 1e-05,
965
+ "loss": 1.0502,
966
+ "step": 155
967
+ },
968
+ {
969
+ "epoch": 0.15,
970
+ "learning_rate": 1e-05,
971
+ "loss": 0.9911,
972
+ "step": 156
973
+ },
974
+ {
975
+ "epoch": 0.15,
976
+ "learning_rate": 1e-05,
977
+ "loss": 1.063,
978
+ "step": 157
979
+ },
980
+ {
981
+ "epoch": 0.15,
982
+ "learning_rate": 1e-05,
983
+ "loss": 1.0383,
984
+ "step": 158
985
+ },
986
+ {
987
+ "epoch": 0.15,
988
+ "learning_rate": 1e-05,
989
+ "loss": 1.0511,
990
+ "step": 159
991
+ },
992
+ {
993
+ "epoch": 0.16,
994
+ "learning_rate": 1e-05,
995
+ "loss": 1.0204,
996
+ "step": 160
997
+ },
998
+ {
999
+ "epoch": 0.16,
1000
+ "learning_rate": 1e-05,
1001
+ "loss": 1.084,
1002
+ "step": 161
1003
+ },
1004
+ {
1005
+ "epoch": 0.16,
1006
+ "learning_rate": 1e-05,
1007
+ "loss": 1.0873,
1008
+ "step": 162
1009
+ },
1010
+ {
1011
+ "epoch": 0.16,
1012
+ "learning_rate": 1e-05,
1013
+ "loss": 1.0304,
1014
+ "step": 163
1015
+ },
1016
+ {
1017
+ "epoch": 0.16,
1018
+ "learning_rate": 1e-05,
1019
+ "loss": 1.0118,
1020
+ "step": 164
1021
+ },
1022
+ {
1023
+ "epoch": 0.16,
1024
+ "learning_rate": 1e-05,
1025
+ "loss": 1.04,
1026
+ "step": 165
1027
+ },
1028
+ {
1029
+ "epoch": 0.16,
1030
+ "learning_rate": 1e-05,
1031
+ "loss": 1.0018,
1032
+ "step": 166
1033
+ },
1034
+ {
1035
+ "epoch": 0.16,
1036
+ "learning_rate": 1e-05,
1037
+ "loss": 1.0432,
1038
+ "step": 167
1039
+ },
1040
+ {
1041
+ "epoch": 0.16,
1042
+ "learning_rate": 1e-05,
1043
+ "loss": 1.0116,
1044
+ "step": 168
1045
+ },
1046
+ {
1047
+ "epoch": 0.16,
1048
+ "learning_rate": 1e-05,
1049
+ "loss": 1.0647,
1050
+ "step": 169
1051
+ },
1052
+ {
1053
+ "epoch": 0.17,
1054
+ "learning_rate": 1e-05,
1055
+ "loss": 1.091,
1056
+ "step": 170
1057
+ },
1058
+ {
1059
+ "epoch": 0.17,
1060
+ "learning_rate": 1e-05,
1061
+ "loss": 1.0167,
1062
+ "step": 171
1063
+ },
1064
+ {
1065
+ "epoch": 0.17,
1066
+ "learning_rate": 1e-05,
1067
+ "loss": 1.0952,
1068
+ "step": 172
1069
+ },
1070
+ {
1071
+ "epoch": 0.17,
1072
+ "learning_rate": 1e-05,
1073
+ "loss": 1.0423,
1074
+ "step": 173
1075
+ },
1076
+ {
1077
+ "epoch": 0.17,
1078
+ "learning_rate": 1e-05,
1079
+ "loss": 1.0198,
1080
+ "step": 174
1081
+ },
1082
+ {
1083
+ "epoch": 0.17,
1084
+ "learning_rate": 1e-05,
1085
+ "loss": 1.0341,
1086
+ "step": 175
1087
+ },
1088
+ {
1089
+ "epoch": 0.17,
1090
+ "learning_rate": 1e-05,
1091
+ "loss": 1.0657,
1092
+ "step": 176
1093
+ },
1094
+ {
1095
+ "epoch": 0.17,
1096
+ "learning_rate": 1e-05,
1097
+ "loss": 1.0084,
1098
+ "step": 177
1099
+ },
1100
+ {
1101
+ "epoch": 0.17,
1102
+ "learning_rate": 1e-05,
1103
+ "loss": 1.0483,
1104
+ "step": 178
1105
+ },
1106
+ {
1107
+ "epoch": 0.17,
1108
+ "learning_rate": 1e-05,
1109
+ "loss": 1.0493,
1110
+ "step": 179
1111
+ },
1112
+ {
1113
+ "epoch": 0.17,
1114
+ "learning_rate": 1e-05,
1115
+ "loss": 1.0328,
1116
+ "step": 180
1117
+ },
1118
+ {
1119
+ "epoch": 0.18,
1120
+ "learning_rate": 1e-05,
1121
+ "loss": 1.0585,
1122
+ "step": 181
1123
+ },
1124
+ {
1125
+ "epoch": 0.18,
1126
+ "learning_rate": 1e-05,
1127
+ "loss": 0.9869,
1128
+ "step": 182
1129
+ },
1130
+ {
1131
+ "epoch": 0.18,
1132
+ "learning_rate": 1e-05,
1133
+ "loss": 1.0266,
1134
+ "step": 183
1135
+ },
1136
+ {
1137
+ "epoch": 0.18,
1138
+ "learning_rate": 1e-05,
1139
+ "loss": 1.0462,
1140
+ "step": 184
1141
+ },
1142
+ {
1143
+ "epoch": 0.18,
1144
+ "learning_rate": 1e-05,
1145
+ "loss": 1.0306,
1146
+ "step": 185
1147
+ },
1148
+ {
1149
+ "epoch": 0.18,
1150
+ "learning_rate": 1e-05,
1151
+ "loss": 1.0459,
1152
+ "step": 186
1153
+ },
1154
+ {
1155
+ "epoch": 0.18,
1156
+ "learning_rate": 1e-05,
1157
+ "loss": 1.0004,
1158
+ "step": 187
1159
+ },
1160
+ {
1161
+ "epoch": 0.18,
1162
+ "learning_rate": 1e-05,
1163
+ "loss": 1.0417,
1164
+ "step": 188
1165
+ },
1166
+ {
1167
+ "epoch": 0.18,
1168
+ "learning_rate": 1e-05,
1169
+ "loss": 1.0712,
1170
+ "step": 189
1171
+ },
1172
+ {
1173
+ "epoch": 0.18,
1174
+ "learning_rate": 1e-05,
1175
+ "loss": 1.0228,
1176
+ "step": 190
1177
+ },
1178
+ {
1179
+ "epoch": 0.19,
1180
+ "learning_rate": 1e-05,
1181
+ "loss": 0.9888,
1182
+ "step": 191
1183
+ },
1184
+ {
1185
+ "epoch": 0.19,
1186
+ "learning_rate": 1e-05,
1187
+ "loss": 0.9393,
1188
+ "step": 192
1189
+ },
1190
+ {
1191
+ "epoch": 0.19,
1192
+ "learning_rate": 1e-05,
1193
+ "loss": 1.052,
1194
+ "step": 193
1195
+ },
1196
+ {
1197
+ "epoch": 0.19,
1198
+ "learning_rate": 1e-05,
1199
+ "loss": 1.0751,
1200
+ "step": 194
1201
+ },
1202
+ {
1203
+ "epoch": 0.19,
1204
+ "learning_rate": 1e-05,
1205
+ "loss": 1.0468,
1206
+ "step": 195
1207
+ },
1208
+ {
1209
+ "epoch": 0.19,
1210
+ "learning_rate": 1e-05,
1211
+ "loss": 1.0235,
1212
+ "step": 196
1213
+ },
1214
+ {
1215
+ "epoch": 0.19,
1216
+ "learning_rate": 1e-05,
1217
+ "loss": 1.0428,
1218
+ "step": 197
1219
+ },
1220
+ {
1221
+ "epoch": 0.19,
1222
+ "learning_rate": 1e-05,
1223
+ "loss": 1.0408,
1224
+ "step": 198
1225
+ },
1226
+ {
1227
+ "epoch": 0.19,
1228
+ "learning_rate": 1e-05,
1229
+ "loss": 1.0112,
1230
+ "step": 199
1231
+ },
1232
+ {
1233
+ "epoch": 0.19,
1234
+ "learning_rate": 1e-05,
1235
+ "loss": 1.0329,
1236
+ "step": 200
1237
+ },
1238
+ {
1239
+ "epoch": 0.19,
1240
+ "eval_val_accuracy": 0.6278333333333334,
1241
+ "eval_val_loss": 1.0557304620742798,
1242
+ "eval_val_runtime": 906.1331,
1243
+ "eval_val_samples_per_second": 1.104,
1244
+ "eval_val_steps_per_second": 0.138,
1245
+ "step": 200
1246
+ },
1247
+ {
1248
+ "epoch": 0.2,
1249
+ "learning_rate": 1e-05,
1250
+ "loss": 1.0219,
1251
+ "step": 201
1252
+ },
1253
+ {
1254
+ "epoch": 0.2,
1255
+ "learning_rate": 1e-05,
1256
+ "loss": 1.0479,
1257
+ "step": 202
1258
+ },
1259
+ {
1260
+ "epoch": 0.2,
1261
+ "learning_rate": 1e-05,
1262
+ "loss": 0.9808,
1263
+ "step": 203
1264
+ },
1265
+ {
1266
+ "epoch": 0.21,
1267
+ "learning_rate": 1e-05,
1268
+ "loss": 1.0404,
1269
+ "step": 204
1270
+ },
1271
+ {
1272
+ "epoch": 0.21,
1273
+ "learning_rate": 1e-05,
1274
+ "loss": 1.0214,
1275
+ "step": 205
1276
+ },
1277
+ {
1278
+ "epoch": 0.21,
1279
+ "learning_rate": 1e-05,
1280
+ "loss": 0.9991,
1281
+ "step": 206
1282
+ },
1283
+ {
1284
+ "epoch": 0.21,
1285
+ "learning_rate": 1e-05,
1286
+ "loss": 0.9435,
1287
+ "step": 207
1288
+ },
1289
+ {
1290
+ "epoch": 0.21,
1291
+ "learning_rate": 1e-05,
1292
+ "loss": 1.0083,
1293
+ "step": 208
1294
+ },
1295
+ {
1296
+ "epoch": 0.21,
1297
+ "learning_rate": 1e-05,
1298
+ "loss": 1.0187,
1299
+ "step": 209
1300
+ },
1301
+ {
1302
+ "epoch": 0.21,
1303
+ "learning_rate": 1e-05,
1304
+ "loss": 1.0493,
1305
+ "step": 210
1306
+ },
1307
+ {
1308
+ "epoch": 0.21,
1309
+ "learning_rate": 1e-05,
1310
+ "loss": 0.9925,
1311
+ "step": 211
1312
+ },
1313
+ {
1314
+ "epoch": 0.21,
1315
+ "learning_rate": 1e-05,
1316
+ "loss": 1.0142,
1317
+ "step": 212
1318
+ },
1319
+ {
1320
+ "epoch": 0.21,
1321
+ "learning_rate": 1e-05,
1322
+ "loss": 1.0131,
1323
+ "step": 213
1324
+ },
1325
+ {
1326
+ "epoch": 0.22,
1327
+ "learning_rate": 1e-05,
1328
+ "loss": 1.0041,
1329
+ "step": 214
1330
+ },
1331
+ {
1332
+ "epoch": 0.22,
1333
+ "learning_rate": 1e-05,
1334
+ "loss": 1.0187,
1335
+ "step": 215
1336
+ },
1337
+ {
1338
+ "epoch": 0.22,
1339
+ "learning_rate": 1e-05,
1340
+ "loss": 1.0551,
1341
+ "step": 216
1342
+ },
1343
+ {
1344
+ "epoch": 0.22,
1345
+ "learning_rate": 1e-05,
1346
+ "loss": 1.0224,
1347
+ "step": 217
1348
+ },
1349
+ {
1350
+ "epoch": 0.22,
1351
+ "learning_rate": 1e-05,
1352
+ "loss": 1.0654,
1353
+ "step": 218
1354
+ },
1355
+ {
1356
+ "epoch": 0.22,
1357
+ "learning_rate": 1e-05,
1358
+ "loss": 1.0472,
1359
+ "step": 219
1360
+ },
1361
+ {
1362
+ "epoch": 0.22,
1363
+ "learning_rate": 1e-05,
1364
+ "loss": 0.9667,
1365
+ "step": 220
1366
+ },
1367
+ {
1368
+ "epoch": 0.22,
1369
+ "learning_rate": 1e-05,
1370
+ "loss": 0.9944,
1371
+ "step": 221
1372
+ },
1373
+ {
1374
+ "epoch": 0.22,
1375
+ "learning_rate": 1e-05,
1376
+ "loss": 1.0283,
1377
+ "step": 222
1378
+ },
1379
+ {
1380
+ "epoch": 0.22,
1381
+ "learning_rate": 1e-05,
1382
+ "loss": 1.0047,
1383
+ "step": 223
1384
+ },
1385
+ {
1386
+ "epoch": 0.23,
1387
+ "learning_rate": 1e-05,
1388
+ "loss": 0.9781,
1389
+ "step": 224
1390
+ },
1391
+ {
1392
+ "epoch": 0.23,
1393
+ "learning_rate": 1e-05,
1394
+ "loss": 1.0127,
1395
+ "step": 225
1396
+ },
1397
+ {
1398
+ "epoch": 0.23,
1399
+ "learning_rate": 1e-05,
1400
+ "loss": 1.035,
1401
+ "step": 226
1402
+ },
1403
+ {
1404
+ "epoch": 0.23,
1405
+ "learning_rate": 1e-05,
1406
+ "loss": 0.9573,
1407
+ "step": 227
1408
+ },
1409
+ {
1410
+ "epoch": 0.23,
1411
+ "learning_rate": 1e-05,
1412
+ "loss": 1.0365,
1413
+ "step": 228
1414
+ },
1415
+ {
1416
+ "epoch": 0.23,
1417
+ "learning_rate": 1e-05,
1418
+ "loss": 1.0508,
1419
+ "step": 229
1420
+ },
1421
+ {
1422
+ "epoch": 0.23,
1423
+ "learning_rate": 1e-05,
1424
+ "loss": 1.0138,
1425
+ "step": 230
1426
+ },
1427
+ {
1428
+ "epoch": 0.23,
1429
+ "learning_rate": 1e-05,
1430
+ "loss": 1.0037,
1431
+ "step": 231
1432
+ },
1433
+ {
1434
+ "epoch": 0.23,
1435
+ "learning_rate": 1e-05,
1436
+ "loss": 1.013,
1437
+ "step": 232
1438
+ },
1439
+ {
1440
+ "epoch": 0.23,
1441
+ "learning_rate": 1e-05,
1442
+ "loss": 1.0025,
1443
+ "step": 233
1444
+ },
1445
+ {
1446
+ "epoch": 0.24,
1447
+ "learning_rate": 1e-05,
1448
+ "loss": 1.0309,
1449
+ "step": 234
1450
+ },
1451
+ {
1452
+ "epoch": 0.24,
1453
+ "learning_rate": 1e-05,
1454
+ "loss": 0.9718,
1455
+ "step": 235
1456
+ },
1457
+ {
1458
+ "epoch": 0.24,
1459
+ "learning_rate": 1e-05,
1460
+ "loss": 0.9968,
1461
+ "step": 236
1462
+ },
1463
+ {
1464
+ "epoch": 0.24,
1465
+ "learning_rate": 1e-05,
1466
+ "loss": 1.024,
1467
+ "step": 237
1468
+ },
1469
+ {
1470
+ "epoch": 0.24,
1471
+ "learning_rate": 1e-05,
1472
+ "loss": 1.0028,
1473
+ "step": 238
1474
+ },
1475
+ {
1476
+ "epoch": 0.24,
1477
+ "learning_rate": 1e-05,
1478
+ "loss": 1.0701,
1479
+ "step": 239
1480
+ },
1481
+ {
1482
+ "epoch": 0.24,
1483
+ "learning_rate": 1e-05,
1484
+ "loss": 1.0428,
1485
+ "step": 240
1486
+ },
1487
+ {
1488
+ "epoch": 0.24,
1489
+ "learning_rate": 1e-05,
1490
+ "loss": 0.9651,
1491
+ "step": 241
1492
+ },
1493
+ {
1494
+ "epoch": 0.24,
1495
+ "learning_rate": 1e-05,
1496
+ "loss": 1.0095,
1497
+ "step": 242
1498
+ },
1499
+ {
1500
+ "epoch": 0.24,
1501
+ "learning_rate": 1e-05,
1502
+ "loss": 1.0495,
1503
+ "step": 243
1504
+ },
1505
+ {
1506
+ "epoch": 0.25,
1507
+ "learning_rate": 1e-05,
1508
+ "loss": 1.0441,
1509
+ "step": 244
1510
+ },
1511
+ {
1512
+ "epoch": 0.25,
1513
+ "learning_rate": 1e-05,
1514
+ "loss": 1.0412,
1515
+ "step": 245
1516
+ },
1517
+ {
1518
+ "epoch": 0.25,
1519
+ "learning_rate": 1e-05,
1520
+ "loss": 1.0335,
1521
+ "step": 246
1522
+ },
1523
+ {
1524
+ "epoch": 0.25,
1525
+ "learning_rate": 1e-05,
1526
+ "loss": 1.0092,
1527
+ "step": 247
1528
+ },
1529
+ {
1530
+ "epoch": 0.25,
1531
+ "learning_rate": 1e-05,
1532
+ "loss": 1.0408,
1533
+ "step": 248
1534
+ },
1535
+ {
1536
+ "epoch": 0.25,
1537
+ "learning_rate": 1e-05,
1538
+ "loss": 0.993,
1539
+ "step": 249
1540
+ },
1541
+ {
1542
+ "epoch": 0.25,
1543
+ "learning_rate": 1e-05,
1544
+ "loss": 0.9546,
1545
+ "step": 250
1546
+ },
1547
+ {
1548
+ "epoch": 0.25,
1549
+ "eval_val_accuracy": 0.6341666666666667,
1550
+ "eval_val_loss": 1.053076148033142,
1551
+ "eval_val_runtime": 906.4123,
1552
+ "eval_val_samples_per_second": 1.103,
1553
+ "eval_val_steps_per_second": 0.138,
1554
+ "step": 250
1555
+ },
1556
+ {
1557
+ "epoch": 0.25,
1558
+ "learning_rate": 1e-05,
1559
+ "loss": 1.043,
1560
+ "step": 251
1561
+ },
1562
+ {
1563
+ "epoch": 0.25,
1564
+ "learning_rate": 1e-05,
1565
+ "loss": 1.0082,
1566
+ "step": 252
1567
+ },
1568
+ {
1569
+ "epoch": 0.25,
1570
+ "learning_rate": 1e-05,
1571
+ "loss": 1.0281,
1572
+ "step": 253
1573
+ },
1574
+ {
1575
+ "epoch": 0.26,
1576
+ "learning_rate": 1e-05,
1577
+ "loss": 0.9779,
1578
+ "step": 254
1579
+ },
1580
+ {
1581
+ "epoch": 0.26,
1582
+ "learning_rate": 1e-05,
1583
+ "loss": 1.0074,
1584
+ "step": 255
1585
+ },
1586
+ {
1587
+ "epoch": 0.26,
1588
+ "learning_rate": 1e-05,
1589
+ "loss": 0.9639,
1590
+ "step": 256
1591
+ },
1592
+ {
1593
+ "epoch": 0.26,
1594
+ "learning_rate": 1e-05,
1595
+ "loss": 1.0121,
1596
+ "step": 257
1597
+ },
1598
+ {
1599
+ "epoch": 0.26,
1600
+ "learning_rate": 1e-05,
1601
+ "loss": 1.036,
1602
+ "step": 258
1603
+ },
1604
+ {
1605
+ "epoch": 0.26,
1606
+ "learning_rate": 1e-05,
1607
+ "loss": 1.0143,
1608
+ "step": 259
1609
+ },
1610
+ {
1611
+ "epoch": 0.26,
1612
+ "learning_rate": 1e-05,
1613
+ "loss": 1.0407,
1614
+ "step": 260
1615
+ },
1616
+ {
1617
+ "epoch": 0.26,
1618
+ "learning_rate": 1e-05,
1619
+ "loss": 1.0202,
1620
+ "step": 261
1621
+ },
1622
+ {
1623
+ "epoch": 0.26,
1624
+ "learning_rate": 1e-05,
1625
+ "loss": 1.0099,
1626
+ "step": 262
1627
+ },
1628
+ {
1629
+ "epoch": 0.26,
1630
+ "learning_rate": 1e-05,
1631
+ "loss": 1.0226,
1632
+ "step": 263
1633
+ },
1634
+ {
1635
+ "epoch": 0.27,
1636
+ "learning_rate": 1e-05,
1637
+ "loss": 1.02,
1638
+ "step": 264
1639
+ },
1640
+ {
1641
+ "epoch": 0.27,
1642
+ "learning_rate": 1e-05,
1643
+ "loss": 1.0197,
1644
+ "step": 265
1645
+ },
1646
+ {
1647
+ "epoch": 0.27,
1648
+ "learning_rate": 1e-05,
1649
+ "loss": 1.0621,
1650
+ "step": 266
1651
+ },
1652
+ {
1653
+ "epoch": 0.27,
1654
+ "learning_rate": 1e-05,
1655
+ "loss": 1.0261,
1656
+ "step": 267
1657
+ },
1658
+ {
1659
+ "epoch": 0.27,
1660
+ "learning_rate": 1e-05,
1661
+ "loss": 1.0392,
1662
+ "step": 268
1663
+ },
1664
+ {
1665
+ "epoch": 0.27,
1666
+ "learning_rate": 1e-05,
1667
+ "loss": 0.9644,
1668
+ "step": 269
1669
+ },
1670
+ {
1671
+ "epoch": 0.27,
1672
+ "learning_rate": 1e-05,
1673
+ "loss": 0.9943,
1674
+ "step": 270
1675
+ },
1676
+ {
1677
+ "epoch": 0.27,
1678
+ "learning_rate": 1e-05,
1679
+ "loss": 1.0354,
1680
+ "step": 271
1681
+ },
1682
+ {
1683
+ "epoch": 0.27,
1684
+ "learning_rate": 1e-05,
1685
+ "loss": 0.9826,
1686
+ "step": 272
1687
+ },
1688
+ {
1689
+ "epoch": 0.27,
1690
+ "learning_rate": 1e-05,
1691
+ "loss": 0.9934,
1692
+ "step": 273
1693
+ },
1694
+ {
1695
+ "epoch": 0.28,
1696
+ "learning_rate": 1e-05,
1697
+ "loss": 1.0222,
1698
+ "step": 274
1699
+ },
1700
+ {
1701
+ "epoch": 0.28,
1702
+ "learning_rate": 1e-05,
1703
+ "loss": 1.0752,
1704
+ "step": 275
1705
+ },
1706
+ {
1707
+ "epoch": 0.28,
1708
+ "learning_rate": 1e-05,
1709
+ "loss": 1.0337,
1710
+ "step": 276
1711
+ },
1712
+ {
1713
+ "epoch": 0.28,
1714
+ "learning_rate": 1e-05,
1715
+ "loss": 0.976,
1716
+ "step": 277
1717
+ },
1718
+ {
1719
+ "epoch": 0.28,
1720
+ "learning_rate": 1e-05,
1721
+ "loss": 1.051,
1722
+ "step": 278
1723
+ },
1724
+ {
1725
+ "epoch": 0.28,
1726
+ "learning_rate": 1e-05,
1727
+ "loss": 1.0338,
1728
+ "step": 279
1729
+ },
1730
+ {
1731
+ "epoch": 0.28,
1732
+ "learning_rate": 1e-05,
1733
+ "loss": 1.0026,
1734
+ "step": 280
1735
+ },
1736
+ {
1737
+ "epoch": 0.28,
1738
+ "learning_rate": 1e-05,
1739
+ "loss": 1.0118,
1740
+ "step": 281
1741
+ },
1742
+ {
1743
+ "epoch": 0.28,
1744
+ "learning_rate": 1e-05,
1745
+ "loss": 0.9982,
1746
+ "step": 282
1747
+ },
1748
+ {
1749
+ "epoch": 0.28,
1750
+ "learning_rate": 1e-05,
1751
+ "loss": 1.0136,
1752
+ "step": 283
1753
+ },
1754
+ {
1755
+ "epoch": 0.29,
1756
+ "learning_rate": 1e-05,
1757
+ "loss": 0.9613,
1758
+ "step": 284
1759
+ },
1760
+ {
1761
+ "epoch": 0.29,
1762
+ "learning_rate": 1e-05,
1763
+ "loss": 1.0122,
1764
+ "step": 285
1765
+ },
1766
+ {
1767
+ "epoch": 0.29,
1768
+ "learning_rate": 1e-05,
1769
+ "loss": 1.049,
1770
+ "step": 286
1771
+ },
1772
+ {
1773
+ "epoch": 0.29,
1774
+ "learning_rate": 1e-05,
1775
+ "loss": 1.0164,
1776
+ "step": 287
1777
+ },
1778
+ {
1779
+ "epoch": 0.29,
1780
+ "learning_rate": 1e-05,
1781
+ "loss": 1.0052,
1782
+ "step": 288
1783
+ },
1784
+ {
1785
+ "epoch": 0.29,
1786
+ "learning_rate": 1e-05,
1787
+ "loss": 1.0244,
1788
+ "step": 289
1789
+ },
1790
+ {
1791
+ "epoch": 0.29,
1792
+ "learning_rate": 1e-05,
1793
+ "loss": 0.9886,
1794
+ "step": 290
1795
+ },
1796
+ {
1797
+ "epoch": 0.29,
1798
+ "learning_rate": 1e-05,
1799
+ "loss": 1.0039,
1800
+ "step": 291
1801
+ },
1802
+ {
1803
+ "epoch": 0.29,
1804
+ "learning_rate": 1e-05,
1805
+ "loss": 1.0088,
1806
+ "step": 292
1807
+ },
1808
+ {
1809
+ "epoch": 0.29,
1810
+ "learning_rate": 1e-05,
1811
+ "loss": 1.0003,
1812
+ "step": 293
1813
+ },
1814
+ {
1815
+ "epoch": 0.3,
1816
+ "learning_rate": 1e-05,
1817
+ "loss": 0.9984,
1818
+ "step": 294
1819
+ },
1820
+ {
1821
+ "epoch": 0.3,
1822
+ "learning_rate": 1e-05,
1823
+ "loss": 1.0288,
1824
+ "step": 295
1825
+ },
1826
+ {
1827
+ "epoch": 0.3,
1828
+ "learning_rate": 1e-05,
1829
+ "loss": 0.9928,
1830
+ "step": 296
1831
+ },
1832
+ {
1833
+ "epoch": 0.3,
1834
+ "learning_rate": 1e-05,
1835
+ "loss": 0.992,
1836
+ "step": 297
1837
+ },
1838
+ {
1839
+ "epoch": 0.3,
1840
+ "learning_rate": 1e-05,
1841
+ "loss": 0.9863,
1842
+ "step": 298
1843
+ },
1844
+ {
1845
+ "epoch": 0.3,
1846
+ "learning_rate": 1e-05,
1847
+ "loss": 0.9959,
1848
+ "step": 299
1849
+ },
1850
+ {
1851
+ "epoch": 0.3,
1852
+ "learning_rate": 1e-05,
1853
+ "loss": 1.0094,
1854
+ "step": 300
1855
+ },
1856
+ {
1857
+ "epoch": 0.3,
1858
+ "eval_val_accuracy": 0.6303333333333334,
1859
+ "eval_val_loss": 1.0518085956573486,
1860
+ "eval_val_runtime": 905.7847,
1861
+ "eval_val_samples_per_second": 1.104,
1862
+ "eval_val_steps_per_second": 0.138,
1863
+ "step": 300
1864
+ },
1865
+ {
1866
+ "epoch": 0.3,
1867
+ "learning_rate": 1e-05,
1868
+ "loss": 1.0049,
1869
+ "step": 301
1870
+ },
1871
+ {
1872
+ "epoch": 0.3,
1873
+ "learning_rate": 1e-05,
1874
+ "loss": 1.005,
1875
+ "step": 302
1876
+ },
1877
+ {
1878
+ "epoch": 0.3,
1879
+ "learning_rate": 1e-05,
1880
+ "loss": 1.0033,
1881
+ "step": 303
1882
+ },
1883
+ {
1884
+ "epoch": 0.31,
1885
+ "learning_rate": 1e-05,
1886
+ "loss": 1.054,
1887
+ "step": 304
1888
+ },
1889
+ {
1890
+ "epoch": 0.31,
1891
+ "learning_rate": 1e-05,
1892
+ "loss": 0.9742,
1893
+ "step": 305
1894
+ },
1895
+ {
1896
+ "epoch": 0.31,
1897
+ "learning_rate": 1e-05,
1898
+ "loss": 1.0061,
1899
+ "step": 306
1900
+ },
1901
+ {
1902
+ "epoch": 0.31,
1903
+ "learning_rate": 1e-05,
1904
+ "loss": 1.015,
1905
+ "step": 307
1906
+ },
1907
+ {
1908
+ "epoch": 0.31,
1909
+ "learning_rate": 1e-05,
1910
+ "loss": 1.0414,
1911
+ "step": 308
1912
+ },
1913
+ {
1914
+ "epoch": 0.31,
1915
+ "learning_rate": 1e-05,
1916
+ "loss": 0.9995,
1917
+ "step": 309
1918
+ },
1919
+ {
1920
+ "epoch": 0.31,
1921
+ "learning_rate": 1e-05,
1922
+ "loss": 0.9901,
1923
+ "step": 310
1924
+ },
1925
+ {
1926
+ "epoch": 0.31,
1927
+ "learning_rate": 1e-05,
1928
+ "loss": 0.9936,
1929
+ "step": 311
1930
+ },
1931
+ {
1932
+ "epoch": 0.31,
1933
+ "learning_rate": 1e-05,
1934
+ "loss": 1.0476,
1935
+ "step": 312
1936
+ },
1937
+ {
1938
+ "epoch": 0.31,
1939
+ "learning_rate": 1e-05,
1940
+ "loss": 0.9987,
1941
+ "step": 313
1942
+ },
1943
+ {
1944
+ "epoch": 0.32,
1945
+ "learning_rate": 1e-05,
1946
+ "loss": 1.0564,
1947
+ "step": 314
1948
+ },
1949
+ {
1950
+ "epoch": 0.32,
1951
+ "learning_rate": 1e-05,
1952
+ "loss": 1.0129,
1953
+ "step": 315
1954
+ },
1955
+ {
1956
+ "epoch": 0.32,
1957
+ "learning_rate": 1e-05,
1958
+ "loss": 0.9667,
1959
+ "step": 316
1960
+ },
1961
+ {
1962
+ "epoch": 0.32,
1963
+ "learning_rate": 1e-05,
1964
+ "loss": 1.0264,
1965
+ "step": 317
1966
+ },
1967
+ {
1968
+ "epoch": 0.32,
1969
+ "learning_rate": 1e-05,
1970
+ "loss": 0.9835,
1971
+ "step": 318
1972
+ },
1973
+ {
1974
+ "epoch": 0.32,
1975
+ "learning_rate": 1e-05,
1976
+ "loss": 1.0199,
1977
+ "step": 319
1978
+ },
1979
+ {
1980
+ "epoch": 0.32,
1981
+ "learning_rate": 1e-05,
1982
+ "loss": 0.9652,
1983
+ "step": 320
1984
+ },
1985
+ {
1986
+ "epoch": 0.32,
1987
+ "learning_rate": 1e-05,
1988
+ "loss": 0.9874,
1989
+ "step": 321
1990
+ },
1991
+ {
1992
+ "epoch": 0.32,
1993
+ "learning_rate": 1e-05,
1994
+ "loss": 1.0079,
1995
+ "step": 322
1996
+ },
1997
+ {
1998
+ "epoch": 0.32,
1999
+ "learning_rate": 1e-05,
2000
+ "loss": 1.0858,
2001
+ "step": 323
2002
+ },
2003
+ {
2004
+ "epoch": 0.33,
2005
+ "learning_rate": 1e-05,
2006
+ "loss": 1.015,
2007
+ "step": 324
2008
+ },
2009
+ {
2010
+ "epoch": 0.33,
2011
+ "learning_rate": 1e-05,
2012
+ "loss": 0.9782,
2013
+ "step": 325
2014
+ },
2015
+ {
2016
+ "epoch": 0.33,
2017
+ "learning_rate": 1e-05,
2018
+ "loss": 1.0589,
2019
+ "step": 326
2020
+ },
2021
+ {
2022
+ "epoch": 0.33,
2023
+ "learning_rate": 1e-05,
2024
+ "loss": 1.0152,
2025
+ "step": 327
2026
+ },
2027
+ {
2028
+ "epoch": 0.33,
2029
+ "learning_rate": 1e-05,
2030
+ "loss": 0.9639,
2031
+ "step": 328
2032
+ },
2033
+ {
2034
+ "epoch": 0.33,
2035
+ "learning_rate": 1e-05,
2036
+ "loss": 1.0089,
2037
+ "step": 329
2038
+ },
2039
+ {
2040
+ "epoch": 0.33,
2041
+ "learning_rate": 1e-05,
2042
+ "loss": 1.056,
2043
+ "step": 330
2044
+ },
2045
+ {
2046
+ "epoch": 0.33,
2047
+ "learning_rate": 1e-05,
2048
+ "loss": 0.985,
2049
+ "step": 331
2050
+ },
2051
+ {
2052
+ "epoch": 0.33,
2053
+ "learning_rate": 1e-05,
2054
+ "loss": 1.027,
2055
+ "step": 332
2056
+ },
2057
+ {
2058
+ "epoch": 0.33,
2059
+ "learning_rate": 1e-05,
2060
+ "loss": 1.0565,
2061
+ "step": 333
2062
+ },
2063
+ {
2064
+ "epoch": 0.34,
2065
+ "learning_rate": 1e-05,
2066
+ "loss": 1.0337,
2067
+ "step": 334
2068
+ },
2069
+ {
2070
+ "epoch": 0.34,
2071
+ "learning_rate": 1e-05,
2072
+ "loss": 1.0453,
2073
+ "step": 335
2074
+ },
2075
+ {
2076
+ "epoch": 0.34,
2077
+ "learning_rate": 1e-05,
2078
+ "loss": 1.0108,
2079
+ "step": 336
2080
+ },
2081
+ {
2082
+ "epoch": 0.34,
2083
+ "learning_rate": 1e-05,
2084
+ "loss": 1.0289,
2085
+ "step": 337
2086
+ },
2087
+ {
2088
+ "epoch": 0.34,
2089
+ "learning_rate": 1e-05,
2090
+ "loss": 1.0096,
2091
+ "step": 338
2092
+ },
2093
+ {
2094
+ "epoch": 0.34,
2095
+ "learning_rate": 1e-05,
2096
+ "loss": 1.0241,
2097
+ "step": 339
2098
+ },
2099
+ {
2100
+ "epoch": 0.34,
2101
+ "learning_rate": 1e-05,
2102
+ "loss": 0.9743,
2103
+ "step": 340
2104
+ },
2105
+ {
2106
+ "epoch": 0.34,
2107
+ "learning_rate": 1e-05,
2108
+ "loss": 1.0387,
2109
+ "step": 341
2110
+ },
2111
+ {
2112
+ "epoch": 0.34,
2113
+ "learning_rate": 1e-05,
2114
+ "loss": 1.0023,
2115
+ "step": 342
2116
+ },
2117
+ {
2118
+ "epoch": 0.34,
2119
+ "learning_rate": 1e-05,
2120
+ "loss": 1.0257,
2121
+ "step": 343
2122
+ },
2123
+ {
2124
+ "epoch": 0.35,
2125
+ "learning_rate": 1e-05,
2126
+ "loss": 0.9827,
2127
+ "step": 344
2128
+ },
2129
+ {
2130
+ "epoch": 0.35,
2131
+ "learning_rate": 1e-05,
2132
+ "loss": 1.0269,
2133
+ "step": 345
2134
+ },
2135
+ {
2136
+ "epoch": 0.35,
2137
+ "learning_rate": 1e-05,
2138
+ "loss": 1.0017,
2139
+ "step": 346
2140
+ },
2141
+ {
2142
+ "epoch": 0.35,
2143
+ "learning_rate": 1e-05,
2144
+ "loss": 0.994,
2145
+ "step": 347
2146
+ },
2147
+ {
2148
+ "epoch": 0.35,
2149
+ "learning_rate": 1e-05,
2150
+ "loss": 1.0285,
2151
+ "step": 348
2152
+ },
2153
+ {
2154
+ "epoch": 0.35,
2155
+ "learning_rate": 1e-05,
2156
+ "loss": 1.0634,
2157
+ "step": 349
2158
+ },
2159
+ {
2160
+ "epoch": 0.35,
2161
+ "learning_rate": 1e-05,
2162
+ "loss": 1.0224,
2163
+ "step": 350
2164
+ },
2165
+ {
2166
+ "epoch": 0.35,
2167
+ "eval_val_accuracy": 0.6265,
2168
+ "eval_val_loss": 1.0556230545043945,
2169
+ "eval_val_runtime": 905.4395,
2170
+ "eval_val_samples_per_second": 1.104,
2171
+ "eval_val_steps_per_second": 0.138,
2172
+ "step": 350
2173
+ },
2174
+ {
2175
+ "epoch": 0.35,
2176
+ "learning_rate": 1e-05,
2177
+ "loss": 0.9755,
2178
+ "step": 351
2179
+ },
2180
+ {
2181
+ "epoch": 0.35,
2182
+ "learning_rate": 1e-05,
2183
+ "loss": 1.0004,
2184
+ "step": 352
2185
+ },
2186
+ {
2187
+ "epoch": 0.35,
2188
+ "learning_rate": 1e-05,
2189
+ "loss": 1.0171,
2190
+ "step": 353
2191
+ },
2192
+ {
2193
+ "epoch": 0.36,
2194
+ "learning_rate": 1e-05,
2195
+ "loss": 1.0,
2196
+ "step": 354
2197
+ },
2198
+ {
2199
+ "epoch": 0.36,
2200
+ "learning_rate": 1e-05,
2201
+ "loss": 0.9887,
2202
+ "step": 355
2203
+ },
2204
+ {
2205
+ "epoch": 0.36,
2206
+ "learning_rate": 1e-05,
2207
+ "loss": 1.0387,
2208
+ "step": 356
2209
+ },
2210
+ {
2211
+ "epoch": 0.36,
2212
+ "learning_rate": 1e-05,
2213
+ "loss": 0.9966,
2214
+ "step": 357
2215
+ },
2216
+ {
2217
+ "epoch": 0.36,
2218
+ "learning_rate": 1e-05,
2219
+ "loss": 1.0213,
2220
+ "step": 358
2221
+ },
2222
+ {
2223
+ "epoch": 0.36,
2224
+ "learning_rate": 1e-05,
2225
+ "loss": 1.0168,
2226
+ "step": 359
2227
+ },
2228
+ {
2229
+ "epoch": 0.36,
2230
+ "learning_rate": 1e-05,
2231
+ "loss": 1.0332,
2232
+ "step": 360
2233
+ },
2234
+ {
2235
+ "epoch": 0.36,
2236
+ "learning_rate": 1e-05,
2237
+ "loss": 1.039,
2238
+ "step": 361
2239
+ },
2240
+ {
2241
+ "epoch": 0.36,
2242
+ "learning_rate": 1e-05,
2243
+ "loss": 1.0034,
2244
+ "step": 362
2245
+ },
2246
+ {
2247
+ "epoch": 0.36,
2248
+ "learning_rate": 1e-05,
2249
+ "loss": 0.9631,
2250
+ "step": 363
2251
+ },
2252
+ {
2253
+ "epoch": 0.37,
2254
+ "learning_rate": 1e-05,
2255
+ "loss": 1.0406,
2256
+ "step": 364
2257
+ },
2258
+ {
2259
+ "epoch": 0.37,
2260
+ "learning_rate": 1e-05,
2261
+ "loss": 0.9821,
2262
+ "step": 365
2263
+ },
2264
+ {
2265
+ "epoch": 0.37,
2266
+ "learning_rate": 1e-05,
2267
+ "loss": 1.0231,
2268
+ "step": 366
2269
+ },
2270
+ {
2271
+ "epoch": 0.37,
2272
+ "learning_rate": 1e-05,
2273
+ "loss": 1.0272,
2274
+ "step": 367
2275
+ },
2276
+ {
2277
+ "epoch": 0.37,
2278
+ "learning_rate": 1e-05,
2279
+ "loss": 1.0231,
2280
+ "step": 368
2281
+ },
2282
+ {
2283
+ "epoch": 0.37,
2284
+ "learning_rate": 1e-05,
2285
+ "loss": 0.9833,
2286
+ "step": 369
2287
+ },
2288
+ {
2289
+ "epoch": 0.37,
2290
+ "learning_rate": 1e-05,
2291
+ "loss": 1.0219,
2292
+ "step": 370
2293
+ },
2294
+ {
2295
+ "epoch": 0.37,
2296
+ "learning_rate": 1e-05,
2297
+ "loss": 0.9647,
2298
+ "step": 371
2299
+ },
2300
+ {
2301
+ "epoch": 0.37,
2302
+ "learning_rate": 1e-05,
2303
+ "loss": 1.0044,
2304
+ "step": 372
2305
+ },
2306
+ {
2307
+ "epoch": 0.37,
2308
+ "learning_rate": 1e-05,
2309
+ "loss": 0.9968,
2310
+ "step": 373
2311
+ },
2312
+ {
2313
+ "epoch": 0.38,
2314
+ "learning_rate": 1e-05,
2315
+ "loss": 0.9956,
2316
+ "step": 374
2317
+ },
2318
+ {
2319
+ "epoch": 0.38,
2320
+ "learning_rate": 1e-05,
2321
+ "loss": 1.0278,
2322
+ "step": 375
2323
+ },
2324
+ {
2325
+ "epoch": 0.38,
2326
+ "learning_rate": 1e-05,
2327
+ "loss": 0.9908,
2328
+ "step": 376
2329
+ },
2330
+ {
2331
+ "epoch": 0.38,
2332
+ "learning_rate": 1e-05,
2333
+ "loss": 1.0058,
2334
+ "step": 377
2335
+ },
2336
+ {
2337
+ "epoch": 0.38,
2338
+ "learning_rate": 1e-05,
2339
+ "loss": 1.0185,
2340
+ "step": 378
2341
+ },
2342
+ {
2343
+ "epoch": 0.38,
2344
+ "learning_rate": 1e-05,
2345
+ "loss": 0.97,
2346
+ "step": 379
2347
+ },
2348
+ {
2349
+ "epoch": 0.38,
2350
+ "learning_rate": 1e-05,
2351
+ "loss": 0.9491,
2352
+ "step": 380
2353
+ },
2354
+ {
2355
+ "epoch": 0.38,
2356
+ "learning_rate": 1e-05,
2357
+ "loss": 1.0639,
2358
+ "step": 381
2359
+ },
2360
+ {
2361
+ "epoch": 0.38,
2362
+ "learning_rate": 1e-05,
2363
+ "loss": 1.0,
2364
+ "step": 382
2365
+ },
2366
+ {
2367
+ "epoch": 0.38,
2368
+ "learning_rate": 1e-05,
2369
+ "loss": 0.9812,
2370
+ "step": 383
2371
+ },
2372
+ {
2373
+ "epoch": 0.39,
2374
+ "learning_rate": 1e-05,
2375
+ "loss": 1.0691,
2376
+ "step": 384
2377
+ },
2378
+ {
2379
+ "epoch": 0.39,
2380
+ "learning_rate": 1e-05,
2381
+ "loss": 1.0074,
2382
+ "step": 385
2383
+ },
2384
+ {
2385
+ "epoch": 0.39,
2386
+ "learning_rate": 1e-05,
2387
+ "loss": 0.9924,
2388
+ "step": 386
2389
+ },
2390
+ {
2391
+ "epoch": 0.39,
2392
+ "learning_rate": 1e-05,
2393
+ "loss": 0.9976,
2394
+ "step": 387
2395
+ },
2396
+ {
2397
+ "epoch": 0.39,
2398
+ "learning_rate": 1e-05,
2399
+ "loss": 1.0217,
2400
+ "step": 388
2401
+ },
2402
+ {
2403
+ "epoch": 0.39,
2404
+ "learning_rate": 1e-05,
2405
+ "loss": 0.9745,
2406
+ "step": 389
2407
+ },
2408
+ {
2409
+ "epoch": 0.39,
2410
+ "learning_rate": 1e-05,
2411
+ "loss": 1.0014,
2412
+ "step": 390
2413
+ },
2414
+ {
2415
+ "epoch": 0.39,
2416
+ "learning_rate": 1e-05,
2417
+ "loss": 1.0192,
2418
+ "step": 391
2419
+ },
2420
+ {
2421
+ "epoch": 0.39,
2422
+ "learning_rate": 1e-05,
2423
+ "loss": 0.9825,
2424
+ "step": 392
2425
+ },
2426
+ {
2427
+ "epoch": 0.4,
2428
+ "learning_rate": 1e-05,
2429
+ "loss": 1.007,
2430
+ "step": 393
2431
+ },
2432
+ {
2433
+ "epoch": 0.4,
2434
+ "learning_rate": 1e-05,
2435
+ "loss": 1.0288,
2436
+ "step": 394
2437
+ },
2438
+ {
2439
+ "epoch": 0.4,
2440
+ "learning_rate": 1e-05,
2441
+ "loss": 1.0342,
2442
+ "step": 395
2443
+ },
2444
+ {
2445
+ "epoch": 0.4,
2446
+ "learning_rate": 1e-05,
2447
+ "loss": 1.0183,
2448
+ "step": 396
2449
+ },
2450
+ {
2451
+ "epoch": 0.4,
2452
+ "learning_rate": 1e-05,
2453
+ "loss": 0.9884,
2454
+ "step": 397
2455
+ },
2456
+ {
2457
+ "epoch": 0.4,
2458
+ "learning_rate": 1e-05,
2459
+ "loss": 0.9674,
2460
+ "step": 398
2461
+ },
2462
+ {
2463
+ "epoch": 0.4,
2464
+ "learning_rate": 1e-05,
2465
+ "loss": 0.9795,
2466
+ "step": 399
2467
+ },
2468
+ {
2469
+ "epoch": 0.4,
2470
+ "learning_rate": 1e-05,
2471
+ "loss": 0.9885,
2472
+ "step": 400
2473
+ },
2474
+ {
2475
+ "epoch": 0.4,
2476
+ "eval_val_accuracy": 0.627,
2477
+ "eval_val_loss": 1.0441503524780273,
2478
+ "eval_val_runtime": 905.3415,
2479
+ "eval_val_samples_per_second": 1.105,
2480
+ "eval_val_steps_per_second": 0.138,
2481
+ "step": 400
2482
+ }
2483
+ ],
2484
+ "logging_steps": 1,
2485
+ "max_steps": 1988,
2486
+ "num_input_tokens_seen": 0,
2487
+ "num_train_epochs": 2,
2488
+ "save_steps": 50,
2489
+ "total_flos": 0.0,
2490
+ "train_batch_size": 1,
2491
+ "trial_name": null,
2492
+ "trial_params": null
2493
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8021270c95d7f97a8c735e62d90edfe50e36e0eedac76c20ba637c77a1dcd38
3
+ size 6267
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)