base_model: bamec66557/VICIOUS_MESH-12B-OMEGA dtype: bfloat16 merge_method: slerp tokenizer_source: base # Slices Configuration slices: - sources: - model: bamec66557/VICIOUS_MESH-12B-OMEGA layer_range: [0, 10] - model: bamec66557/VICIOUS_MESH-12B-BETA layer_range: [0, 10] parameters: t: - name: self_attn value: [0.5, 0.55, 0.6, 0.65, 0.7] - name: mlp value: [1.0, 1.05, 1.1, 1.15, 1.2] - name: layer_norm value: [0.9, 0.95, 1.0, 1.05, 1.1] - sources: - model: bamec66557/VICIOUS_MESH-12B-OMEGA layer_range: [10, 20] - model: bamec66557/VICIOUS_MESH-12B-BETA layer_range: [10, 20] parameters: t: - name: self_attn value: [0.4, 0.45, 0.5, 0.55, 0.6] - name: mlp value: [1.1, 1.15, 1.2, 1.25, 1.3] - name: layer_norm value: [1.0, 1.05, 1.1, 1.15, 1.2] - sources: - model: bamec66557/VICIOUS_MESH-12B-OMEGA layer_range: [20, 30] - model: bamec66557/VICIOUS_MESH-12B-BETA layer_range: [20, 30] parameters: t: - name: self_attn value: [0.6, 0.65, 0.7, 0.75, 0.8] - name: mlp value: [0.9, 0.95, 1.0, 1.05, 1.1] - name: layer_norm value: [0.85, 0.9, 0.95, 1.0, 1.05] - sources: - model: bamec66557/VICIOUS_MESH-12B-OMEGA layer_range: [30, 40] - model: bamec66557/VICIOUS_MESH-12B-BETA layer_range: [30, 40] parameters: t: - name: self_attn value: [0.7, 0.75, 0.8, 0.85, 0.9] - name: mlp value: [0.8, 0.85, 0.9, 0.95, 1.0] - name: layer_norm value: [0.8, 0.85, 0.9, 0.95, 1.0] # Regularization regularization: - method: gradient_penalty scale: 0.05 # Increased influence for gradient control - method: weight_clipping clip_range: [-0.2, 0.2] # Broader clipping range for flexibility - method: random_noise scale: 0.01 # Stronger noise injection - method: attention_dropout scale: 0.1 # Higher dropout to reduce attention fixation # Postprocessing postprocessing: - operation: entropy_regularization scale: 0.05 # Stronger encouragement for diverse outputs - operation: non_linear_scaling parameters: function: tanh - operation: sharpening intensity: 0.5 # Enhanced sharpening for precise outputs - operation: gaussian_smoothing sigma: 1.5 # Increased smoothing for stable outputs - operation: normalize - operation: dynamic_scaling scale_range: [0.8, 1.2] # Expanded dynamic range for scaling - operation: smoothing parameters: adaptive: true range: [0.85, 1.15] # Wider adaptive smoothing range kernel_size: 5