--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: xls-r-300-cv17-russian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ru split: validation args: ru metrics: - name: Wer type: wer value: 0.188997883332954 --- [Visualize in Weights & Biases](https://wandb.ai/badr-nlp/xlsr-continual-finetuning-polish/runs/jy2o4nlb) # xls-r-300-cv17-russian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2217 - Wer: 0.1890 - Cer: 0.0400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 7.4458 | 0.1213 | 100 | 5.2323 | 1.0 | 1.0 | | 3.5842 | 0.2426 | 200 | 3.2968 | 1.0 | 1.0 | | 3.3917 | 0.3639 | 300 | 3.1896 | 1.0 | 1.0 | | 2.8337 | 0.4851 | 400 | 2.5859 | 0.9996 | 0.9331 | | 1.7449 | 0.6064 | 500 | 1.0910 | 0.9241 | 0.3271 | | 1.2373 | 0.7277 | 600 | 0.7784 | 0.8014 | 0.2249 | | 1.2848 | 0.8490 | 700 | 0.6509 | 0.6905 | 0.1832 | | 0.901 | 0.9703 | 800 | 0.4997 | 0.6067 | 0.1426 | | 0.3194 | 1.0916 | 900 | 0.4008 | 0.4666 | 0.1054 | | 0.4158 | 1.2129 | 1000 | 0.3633 | 0.4323 | 0.0960 | | 0.3942 | 1.3341 | 1100 | 0.3397 | 0.4175 | 0.0915 | | 0.3117 | 1.4554 | 1200 | 0.3323 | 0.3879 | 0.0853 | | 0.443 | 1.5767 | 1300 | 0.3133 | 0.3749 | 0.0815 | | 0.4101 | 1.6980 | 1400 | 0.2976 | 0.3475 | 0.0759 | | 0.2915 | 1.8193 | 1500 | 0.2900 | 0.3452 | 0.0752 | | 0.3708 | 1.9406 | 1600 | 0.2857 | 0.3385 | 0.0732 | | 0.2434 | 2.0619 | 1700 | 0.3089 | 0.3785 | 0.0826 | | 0.1939 | 2.1831 | 1800 | 0.2973 | 0.3488 | 0.0770 | | 0.1718 | 2.3044 | 1900 | 0.2746 | 0.3223 | 0.0695 | | 0.1663 | 2.4257 | 2000 | 0.2847 | 0.3493 | 0.0753 | | 0.1692 | 2.5470 | 2100 | 0.2802 | 0.3231 | 0.0709 | | 0.2616 | 2.6683 | 2200 | 0.2775 | 0.3305 | 0.0721 | | 0.1747 | 2.7896 | 2300 | 0.2781 | 0.3186 | 0.0699 | | 0.2515 | 2.9109 | 2400 | 0.2740 | 0.3117 | 0.0685 | | 0.3123 | 3.0321 | 2500 | 0.2442 | 0.2777 | 0.0599 | | 0.1759 | 3.1534 | 2600 | 0.2461 | 0.2738 | 0.0586 | | 0.2088 | 3.2747 | 2700 | 0.2506 | 0.2737 | 0.0588 | | 0.15 | 3.3960 | 2800 | 0.2404 | 0.2714 | 0.0583 | | 0.2458 | 3.5173 | 2900 | 0.2384 | 0.2673 | 0.0574 | | 0.1834 | 3.6386 | 3000 | 0.2343 | 0.2633 | 0.0562 | | 0.1895 | 3.7599 | 3100 | 0.2326 | 0.2639 | 0.0568 | | 0.2214 | 3.8811 | 3200 | 0.2322 | 0.2624 | 0.0564 | | 0.1076 | 4.0024 | 3300 | 0.2395 | 0.2680 | 0.0580 | | 0.1195 | 4.1237 | 3400 | 0.2445 | 0.2623 | 0.0565 | | 0.1276 | 4.2450 | 3500 | 0.2485 | 0.2776 | 0.0600 | | 0.1139 | 4.3663 | 3600 | 0.2436 | 0.2639 | 0.0573 | | 0.1151 | 4.4876 | 3700 | 0.2617 | 0.2753 | 0.0601 | | 0.1482 | 4.6089 | 3800 | 0.2378 | 0.2610 | 0.0565 | | 0.1237 | 4.7301 | 3900 | 0.2335 | 0.2584 | 0.0555 | | 0.1441 | 4.8514 | 4000 | 0.2332 | 0.2525 | 0.0544 | | 0.1557 | 4.9727 | 4100 | 0.2376 | 0.2606 | 0.0564 | | 0.1246 | 5.0940 | 4200 | 0.2297 | 0.2370 | 0.0507 | | 0.1676 | 5.2153 | 4300 | 0.2209 | 0.2385 | 0.0507 | | 0.1348 | 5.3366 | 4400 | 0.2202 | 0.2337 | 0.0501 | | 0.1198 | 5.4579 | 4500 | 0.2197 | 0.2293 | 0.0491 | | 0.1468 | 5.5791 | 4600 | 0.2239 | 0.2287 | 0.0489 | | 0.1706 | 5.7004 | 4700 | 0.2157 | 0.2284 | 0.0487 | | 0.0946 | 5.8217 | 4800 | 0.2097 | 0.2255 | 0.0480 | | 0.138 | 5.9430 | 4900 | 0.2094 | 0.2230 | 0.0476 | | 0.0447 | 6.0643 | 5000 | 0.2330 | 0.2271 | 0.0483 | | 0.0863 | 6.1856 | 5100 | 0.2283 | 0.2295 | 0.0491 | | 0.0813 | 6.3069 | 5200 | 0.2311 | 0.2287 | 0.0492 | | 0.0768 | 6.4281 | 5300 | 0.2305 | 0.2307 | 0.0494 | | 0.0688 | 6.5494 | 5400 | 0.2249 | 0.2271 | 0.0487 | | 0.0919 | 6.6707 | 5500 | 0.2075 | 0.2204 | 0.0470 | | 0.0813 | 6.7920 | 5600 | 0.2251 | 0.2249 | 0.0478 | | 0.1033 | 6.9133 | 5700 | 0.2236 | 0.2183 | 0.0468 | | 0.0857 | 7.0346 | 5800 | 0.2220 | 0.2142 | 0.0458 | | 0.1046 | 7.1559 | 5900 | 0.2227 | 0.2122 | 0.0451 | | 0.0851 | 7.2771 | 6000 | 0.2319 | 0.2087 | 0.0446 | | 0.0679 | 7.3984 | 6100 | 0.2195 | 0.2102 | 0.0450 | | 0.1116 | 7.5197 | 6200 | 0.2205 | 0.2077 | 0.0441 | | 0.0749 | 7.6410 | 6300 | 0.2126 | 0.2061 | 0.0439 | | 0.087 | 7.7623 | 6400 | 0.2161 | 0.2058 | 0.0437 | | 0.0947 | 7.8836 | 6500 | 0.2150 | 0.2042 | 0.0433 | | 0.0472 | 8.0049 | 6600 | 0.2194 | 0.2041 | 0.0431 | | 0.0521 | 8.1261 | 6700 | 0.2317 | 0.2037 | 0.0433 | | 0.0477 | 8.2474 | 6800 | 0.2277 | 0.2024 | 0.0428 | | 0.042 | 8.3687 | 6900 | 0.2232 | 0.2020 | 0.0428 | | 0.0327 | 8.4900 | 7000 | 0.2240 | 0.2012 | 0.0422 | | 0.0427 | 8.6113 | 7100 | 0.2241 | 0.1984 | 0.0420 | | 0.0438 | 8.7326 | 7200 | 0.2174 | 0.1986 | 0.0417 | | 0.0277 | 8.8539 | 7300 | 0.2216 | 0.1949 | 0.0413 | | 0.0415 | 8.9751 | 7400 | 0.2140 | 0.1958 | 0.0415 | | 0.0803 | 9.0964 | 7500 | 0.2267 | 0.1937 | 0.0410 | | 0.0388 | 9.2177 | 7600 | 0.2265 | 0.1925 | 0.0409 | | 0.0716 | 9.3390 | 7700 | 0.2189 | 0.1916 | 0.0406 | | 0.0498 | 9.4603 | 7800 | 0.2190 | 0.1913 | 0.0404 | | 0.0692 | 9.5816 | 7900 | 0.2198 | 0.1911 | 0.0404 | | 0.0691 | 9.7029 | 8000 | 0.2233 | 0.1898 | 0.0401 | | 0.0743 | 9.8241 | 8100 | 0.2242 | 0.1897 | 0.0401 | | 0.0496 | 9.9454 | 8200 | 0.2217 | 0.1890 | 0.0400 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1