Thomas Shaw commited on
Commit
e87868f
·
1 Parent(s): a7c9f0b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.15 +/- 19.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efdfa1d2680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efdfa1d2710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efdfa1d27a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efdfa1d2830>", "_build": "<function ActorCriticPolicy._build at 0x7efdfa1d28c0>", "forward": "<function ActorCriticPolicy.forward at 0x7efdfa1d2950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efdfa1d29e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efdfa1d2a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7efdfa1d2b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efdfa1d2b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efdfa1d2c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efdfa1d2cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efdfa1c39c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685583481344974403, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC35T1DxYI/Drtkvfn0hL4FPGs9dpvGvQAAAAAAAAAApiXTvTEJaz++EyS+WeyJvgoF+r0PYoC8AAAAAAAAAADNAls8tkgovIFkAr3U1ho8awSQPc6yBL0AAIA/AACAP0O9j76H1Y8/FSr/vWkDob4I2Q6+gymAPgAAAAAAAAAA2gkAPrDmlz/6vdk98jqpvjE7bj7Vzse8AAAAAAAAAABz5ae9d8M+P2vxYD0gNo6+eHAgPfbFg70AAAAAAAAAAGYTqL67gDQ/s3b4PUzyI76hiVS9g0GaPQAAAAAAAAAAMwtdu3m9Lj62cd29zsxWvvZ8n72w4Es9AAAAAAAAAACaZa68zgCwP3H/Cb8O6Lq+Vk6hPEK3rj0AAAAAAAAAANOdRL7Bw6S8tdvYOgkMOTlF9RM+bqsNugAAgD8AAIA/De/tPTs5Iz+/dw6+t5VmvjLxIj2XCCu6AAAAAAAAAADVN4O+hHBaP8VjWT3GqYC+Y5Gxva0hVDwAAAAAAAAAAJrJN7s4fuS7vtiGvC6EkjyJGzW9LUV2PQAAgD8AAIA/Wig0vpxfb7w2tBE7PeEwOfCQyj2X5Ti6AACAPwAAgD8ASmu9MbtqP3lXG71J/Eq+DukmPGsdy70AAAAAAAAAADNXorxcSye6foZBut7W2rPdJLC6pQJjOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/DtITXaraMAWyUTToBjAF0lEdAlmRTNpudgHV9lChoBkdAcl+YXfqHGmgHTRQBaAhHQJZkz9hqj8F1fZQoaAZHQHAkAR9PUKBoB01KAWgIR0CWZje7tiQUdX2UKGgGR0BxzOOGTLW7aAdNcAFoCEdAlmen0Cih4HV9lChoBkdAb7lPMSsbN2gHTT8BaAhHQJZnt3+uNgl1fZQoaAZHQG2sxfv4M4NoB02WAWgIR0CWeb0oScsldX2UKGgGR0BwutuAI6bOaAdNPgFoCEdAlnpLVSXMQnV9lChoBkdAcJYJ40Mw12gHTWABaAhHQJZ6/DqGDcx1fZQoaAZHQG/w2vStvGZoB01qAWgIR0CWewsq8UVSdX2UKGgGR0Bs3EhvBJqZaAdNKAFoCEdAlnsgswtap3V9lChoBkdAcO0xcVxjrmgHTTkBaAhHQJZ7N6gM+eR1fZQoaAZHQHBYbqptJnRoB01JAWgIR0CWe7/nGKhtdX2UKGgGR0ByWvAeq7yyaAdNDwFoCEdAlnxNkrf+CXV9lChoBkdAb9HDxb0OE2gHTUEBaAhHQJZ9Dg3tKI11fZQoaAZHQG6B/ra/RE5oB01JAWgIR0CWfpAUcn3MdX2UKGgGR0BsJlkWhysCaAdNNwFoCEdAln6NjLB9C3V9lChoBkdAcMqhBZ6lcmgHTTsBaAhHQJZ/ZBBzFMt1fZQoaAZHQHDf1cIJJGxoB01rAWgIR0CWgHHDaXa8dX2UKGgGR0Bxkt2yLQ5WaAdNQwFoCEdAloEQJ1JUYXV9lChoBkdAccEO45Lh72gHTSMBaAhHQJaBW0Y0l7d1fZQoaAZHQDc6Y5T6zmhoB00JAWgIR0CWgxYjB2wFdX2UKGgGR0BvNgNPP9k0aAdNUQFoCEdAloNsVDa4+nV9lChoBkdAc4UNPxhDxGgHTScBaAhHQJaD6k2xY7t1fZQoaAZHQHDW3UUfxMFoB00vAWgIR0CWhewuM+/ydX2UKGgGR0BwgSp4rz5HaAdNMgFoCEdAloZmpqASWnV9lChoBkdAcg5reIl+mWgHTVwBaAhHQJaIbRu0kW11fZQoaAZHQHBwXDWK/EhoB00kAWgIR0CWiN3/giu/dX2UKGgGR0Bu/do11nuiaAdNVwFoCEdAlok0Mw1zhnV9lChoBkdAckCY/3WWhWgHTXoBaAhHQJaJq0svqTt1fZQoaAZHQG+WEmQbMotoB02DAWgIR0CWjE2KEWZadX2UKGgGR0BuzA1FYuCgaAdNOwFoCEdAloxd3GGVRnV9lChoBkdAcBGdpZfUnWgHTS4BaAhHQJaNDVCojwB1fZQoaAZHQHFuxNucc2loB01VAWgIR0CWjZ/GEPDpdX2UKGgGR0BvH5EpiI+GaAdNTAFoCEdAlpAe10DEFXV9lChoBkdAbznlGwzLwGgHTT0BaAhHQJaQYjgQ6IZ1fZQoaAZHQHFKF2/zreJoB01PAWgIR0CWlEhisny/dX2UKGgGR0BwOyxKQJXyaAdNeQFoCEdAlpRYH9m6G3V9lChoBkdAcfzzWwu/UWgHTVUBaAhHQJaU61qnFYN1fZQoaAZHQG/RdMK1G9ZoB01aAWgIR0CWlW9qUNaydX2UKGgGR0BvLzzoUzsQaAdNNwFoCEdAlpXrDl5nlHV9lChoBkdAb6Op7TlT32gHTTQBaAhHQJaXtda+vhZ1fZQoaAZHQGy5gDA8B+5oB01UAWgIR0CWmEb6guh9dX2UKGgGR0BtabbSJCSiaAdNPQFoCEdAlphwVGkN4XV9lChoBkdAcx8OafBeomgHTVIBaAhHQJaYiWqtHQR1fZQoaAZHQG601fVqeshoB02uAWgIR0CWmale4TbndX2UKGgGR0BwbzmknCwbaAdNMAFoCEdAlppADFId2nV9lChoBkdAcUlZPVNHpmgHTU0BaAhHQJaaw/mknCx1fZQoaAZHQHLqVYuCf6JoB00ZAWgIR0CWm8fXf642dX2UKGgGR0ByeRftx+8XaAdNfwFoCEdAlpxw5WBBiXV9lChoBkdAccRJfYzzmWgHTWkBaAhHQJacoth/iHZ1fZQoaAZHQHErKaoddVxoB007AWgIR0CWnMBoVVPvdX2UKGgGR0ByhDXjENvwaAdNAwFoCEdAlp1ZRTCLuXV9lChoBkdAblbsAvL5h2gHTTEBaAhHQJaewOjIq9Z1fZQoaAZHQHGJ+zIFNcpoB00jAWgIR0CWny7lJYkndX2UKGgGR0BwR9+fAbhnaAdNNwFoCEdAlp9eAZsKs3V9lChoBkdAb8ISSvC/GmgHTUMBaAhHQJagszvZyuJ1fZQoaAZHQHDShiCrcTJoB00cAWgIR0CWoa1FH8TBdX2UKGgGR0BwiY2uPmxMaAdNXQFoCEdAlrO4qXnhbXV9lChoBkdAcE55xzaK12gHTTwBaAhHQJa0rkLhJiB1fZQoaAZHQG50Y46wMYxoB01NAWgIR0CWtiADJU5udX2UKGgGR0BvOkTxoZhsaAdNoAFoCEdAlrdq3iJfpnV9lChoBkdAb502rn1WbWgHTccBaAhHQJa5PwlSjxl1fZQoaAZHQHCbyL/CIk9oB02oAWgIR0CWuskmx+rmdX2UKGgGR0BxKAOvt+kQaAdNYAFoCEdAlrsInv2GqXV9lChoBkdAchTpiqhlDmgHTZcBaAhHQJa7WGahHsl1fZQoaAZHQGx35uyeI2xoB00rAWgIR0CWu3hOP/70dX2UKGgGR0BxwEPJ7sv7aAdNPwFoCEdAlruHT7VJ+XV9lChoBkdAcGxPmxMWXWgHTbUBaAhHQJa9Kxkd3jd1fZQoaAZHQG/KqoybhFVoB01yAWgIR0CWvi7bL2YfdX2UKGgGR0BxdKFdszl+aAdNwgFoCEdAlr5WHpKSPnV9lChoBkdAcc3QYk3S8mgHTfQBaAhHQJbAhaSs8xN1fZQoaAZHQG8QqmTC+DhoB02VAWgIR0CWwisw+MZQdX2UKGgGR0ByKRqREF4caAdNPgFoCEdAlsLr4nF5wHV9lChoBkdAbswhzNliB2gHTZ4BaAhHQJbEBS9/SYx1fZQoaAZHQG0RPgeii7FoB010AWgIR0CWxFvvjOs1dX2UKGgGR0BwYK8SPEKmaAdNOgFoCEdAlsW0UoKD03V9lChoBkdAcHjxs2vSt2gHTWUBaAhHQJbGbDk2gnN1fZQoaAZHQHAV4uXeFcpoB00hAWgIR0CWyWc8TzundX2UKGgGR0BwpWmqHXVcaAdNJAFoCEdAlsxMMAmzB3V9lChoBkdAcB6ri2lVLmgHTWoBaAhHQJbMyLDQ7cR1fZQoaAZHQHHQsAeaKDVoB01gAWgIR0CWzRKneiztdX2UKGgGR0BsKRYoy9EkaAdNKQFoCEdAls2oPsiSq3V9lChoBkdAcJoHim2srGgHTToBaAhHQJbRmB06o2p1fZQoaAZHQG9kBz/6wdNoB02zAWgIR0CW0cNgjQiSdX2UKGgGR0BvNyx5cC5maAdNQAFoCEdAltOWjbi6x3V9lChoBkdAcMEK3uuzQmgHTU0BaAhHQJbVJGqgh8p1fZQoaAZHQHFsP6CUX55oB004AWgIR0CW1T9HMEA6dX2UKGgGR0Bx1V2zOX3QaAdNuwFoCEdAltXiiM5wO3V9lChoBkdAcPyAsCkoF2gHTWoBaAhHQJbYJx82Ji11fZQoaAZHQG8datT1kDpoB01RAWgIR0CW2Rp3X7LudX2UKGgGR0ByKCp71Iy1aAdNFQFoCEdAltzqhxo7FXV9lChoBkdAcg69xZMcqGgHTasBaAhHQJbddBHCoCN1fZQoaAZHQHDbssYl6Z9oB01vAWgIR0CW3fvq1PWQdX2UKGgGR0BwyezyBkI5aAdNSAFoCEdAlt7swtapxXV9lChoBkdAcQSKxLTQV2gHTXcBaAhHQJbhPGHYYix1fZQoaAZHQDG32PDHfdhoB00DAWgIR0CW4d+5e7cxdX2UKGgGR0BwPaf16E8JaAdNdgFoCEdAluHgMlTm4nV9lChoBkdAcNAzmfXf7GgHTSsBaAhHQJbh9EhJRO11fZQoaAZHQG8HVNpM6BBoB003AWgIR0CW4mvwVj7RdX2UKGgGR0ByXZfdAPd3aAdNGQFoCEdAluQKkdmxuHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a40c93d95d96988966db0ddee5bbc6d63221f4233f805988e632dd7e3ea2882
3
+ size 146759
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efdfa1d2680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efdfa1d2710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efdfa1d27a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efdfa1d2830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efdfa1d28c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efdfa1d2950>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efdfa1d29e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efdfa1d2a70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efdfa1d2b00>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efdfa1d2b90>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efdfa1d2c20>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efdfa1d2cb0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efdfa1c39c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685583481344974403,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC35T1DxYI/Drtkvfn0hL4FPGs9dpvGvQAAAAAAAAAApiXTvTEJaz++EyS+WeyJvgoF+r0PYoC8AAAAAAAAAADNAls8tkgovIFkAr3U1ho8awSQPc6yBL0AAIA/AACAP0O9j76H1Y8/FSr/vWkDob4I2Q6+gymAPgAAAAAAAAAA2gkAPrDmlz/6vdk98jqpvjE7bj7Vzse8AAAAAAAAAABz5ae9d8M+P2vxYD0gNo6+eHAgPfbFg70AAAAAAAAAAGYTqL67gDQ/s3b4PUzyI76hiVS9g0GaPQAAAAAAAAAAMwtdu3m9Lj62cd29zsxWvvZ8n72w4Es9AAAAAAAAAACaZa68zgCwP3H/Cb8O6Lq+Vk6hPEK3rj0AAAAAAAAAANOdRL7Bw6S8tdvYOgkMOTlF9RM+bqsNugAAgD8AAIA/De/tPTs5Iz+/dw6+t5VmvjLxIj2XCCu6AAAAAAAAAADVN4O+hHBaP8VjWT3GqYC+Y5Gxva0hVDwAAAAAAAAAAJrJN7s4fuS7vtiGvC6EkjyJGzW9LUV2PQAAgD8AAIA/Wig0vpxfb7w2tBE7PeEwOfCQyj2X5Ti6AACAPwAAgD8ASmu9MbtqP3lXG71J/Eq+DukmPGsdy70AAAAAAAAAADNXorxcSye6foZBut7W2rPdJLC6pQJjOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/DtITXaraMAWyUTToBjAF0lEdAlmRTNpudgHV9lChoBkdAcl+YXfqHGmgHTRQBaAhHQJZkz9hqj8F1fZQoaAZHQHAkAR9PUKBoB01KAWgIR0CWZje7tiQUdX2UKGgGR0BxzOOGTLW7aAdNcAFoCEdAlmen0Cih4HV9lChoBkdAb7lPMSsbN2gHTT8BaAhHQJZnt3+uNgl1fZQoaAZHQG2sxfv4M4NoB02WAWgIR0CWeb0oScsldX2UKGgGR0BwutuAI6bOaAdNPgFoCEdAlnpLVSXMQnV9lChoBkdAcJYJ40Mw12gHTWABaAhHQJZ6/DqGDcx1fZQoaAZHQG/w2vStvGZoB01qAWgIR0CWewsq8UVSdX2UKGgGR0Bs3EhvBJqZaAdNKAFoCEdAlnsgswtap3V9lChoBkdAcO0xcVxjrmgHTTkBaAhHQJZ7N6gM+eR1fZQoaAZHQHBYbqptJnRoB01JAWgIR0CWe7/nGKhtdX2UKGgGR0ByWvAeq7yyaAdNDwFoCEdAlnxNkrf+CXV9lChoBkdAb9HDxb0OE2gHTUEBaAhHQJZ9Dg3tKI11fZQoaAZHQG6B/ra/RE5oB01JAWgIR0CWfpAUcn3MdX2UKGgGR0BsJlkWhysCaAdNNwFoCEdAln6NjLB9C3V9lChoBkdAcMqhBZ6lcmgHTTsBaAhHQJZ/ZBBzFMt1fZQoaAZHQHDf1cIJJGxoB01rAWgIR0CWgHHDaXa8dX2UKGgGR0Bxkt2yLQ5WaAdNQwFoCEdAloEQJ1JUYXV9lChoBkdAccEO45Lh72gHTSMBaAhHQJaBW0Y0l7d1fZQoaAZHQDc6Y5T6zmhoB00JAWgIR0CWgxYjB2wFdX2UKGgGR0BvNgNPP9k0aAdNUQFoCEdAloNsVDa4+nV9lChoBkdAc4UNPxhDxGgHTScBaAhHQJaD6k2xY7t1fZQoaAZHQHDW3UUfxMFoB00vAWgIR0CWhewuM+/ydX2UKGgGR0BwgSp4rz5HaAdNMgFoCEdAloZmpqASWnV9lChoBkdAcg5reIl+mWgHTVwBaAhHQJaIbRu0kW11fZQoaAZHQHBwXDWK/EhoB00kAWgIR0CWiN3/giu/dX2UKGgGR0Bu/do11nuiaAdNVwFoCEdAlok0Mw1zhnV9lChoBkdAckCY/3WWhWgHTXoBaAhHQJaJq0svqTt1fZQoaAZHQG+WEmQbMotoB02DAWgIR0CWjE2KEWZadX2UKGgGR0BuzA1FYuCgaAdNOwFoCEdAloxd3GGVRnV9lChoBkdAcBGdpZfUnWgHTS4BaAhHQJaNDVCojwB1fZQoaAZHQHFuxNucc2loB01VAWgIR0CWjZ/GEPDpdX2UKGgGR0BvH5EpiI+GaAdNTAFoCEdAlpAe10DEFXV9lChoBkdAbznlGwzLwGgHTT0BaAhHQJaQYjgQ6IZ1fZQoaAZHQHFKF2/zreJoB01PAWgIR0CWlEhisny/dX2UKGgGR0BwOyxKQJXyaAdNeQFoCEdAlpRYH9m6G3V9lChoBkdAcfzzWwu/UWgHTVUBaAhHQJaU61qnFYN1fZQoaAZHQG/RdMK1G9ZoB01aAWgIR0CWlW9qUNaydX2UKGgGR0BvLzzoUzsQaAdNNwFoCEdAlpXrDl5nlHV9lChoBkdAb6Op7TlT32gHTTQBaAhHQJaXtda+vhZ1fZQoaAZHQGy5gDA8B+5oB01UAWgIR0CWmEb6guh9dX2UKGgGR0BtabbSJCSiaAdNPQFoCEdAlphwVGkN4XV9lChoBkdAcx8OafBeomgHTVIBaAhHQJaYiWqtHQR1fZQoaAZHQG601fVqeshoB02uAWgIR0CWmale4TbndX2UKGgGR0BwbzmknCwbaAdNMAFoCEdAlppADFId2nV9lChoBkdAcUlZPVNHpmgHTU0BaAhHQJaaw/mknCx1fZQoaAZHQHLqVYuCf6JoB00ZAWgIR0CWm8fXf642dX2UKGgGR0ByeRftx+8XaAdNfwFoCEdAlpxw5WBBiXV9lChoBkdAccRJfYzzmWgHTWkBaAhHQJacoth/iHZ1fZQoaAZHQHErKaoddVxoB007AWgIR0CWnMBoVVPvdX2UKGgGR0ByhDXjENvwaAdNAwFoCEdAlp1ZRTCLuXV9lChoBkdAblbsAvL5h2gHTTEBaAhHQJaewOjIq9Z1fZQoaAZHQHGJ+zIFNcpoB00jAWgIR0CWny7lJYkndX2UKGgGR0BwR9+fAbhnaAdNNwFoCEdAlp9eAZsKs3V9lChoBkdAb8ISSvC/GmgHTUMBaAhHQJagszvZyuJ1fZQoaAZHQHDShiCrcTJoB00cAWgIR0CWoa1FH8TBdX2UKGgGR0BwiY2uPmxMaAdNXQFoCEdAlrO4qXnhbXV9lChoBkdAcE55xzaK12gHTTwBaAhHQJa0rkLhJiB1fZQoaAZHQG50Y46wMYxoB01NAWgIR0CWtiADJU5udX2UKGgGR0BvOkTxoZhsaAdNoAFoCEdAlrdq3iJfpnV9lChoBkdAb502rn1WbWgHTccBaAhHQJa5PwlSjxl1fZQoaAZHQHCbyL/CIk9oB02oAWgIR0CWuskmx+rmdX2UKGgGR0BxKAOvt+kQaAdNYAFoCEdAlrsInv2GqXV9lChoBkdAchTpiqhlDmgHTZcBaAhHQJa7WGahHsl1fZQoaAZHQGx35uyeI2xoB00rAWgIR0CWu3hOP/70dX2UKGgGR0BxwEPJ7sv7aAdNPwFoCEdAlruHT7VJ+XV9lChoBkdAcGxPmxMWXWgHTbUBaAhHQJa9Kxkd3jd1fZQoaAZHQG/KqoybhFVoB01yAWgIR0CWvi7bL2YfdX2UKGgGR0BxdKFdszl+aAdNwgFoCEdAlr5WHpKSPnV9lChoBkdAcc3QYk3S8mgHTfQBaAhHQJbAhaSs8xN1fZQoaAZHQG8QqmTC+DhoB02VAWgIR0CWwisw+MZQdX2UKGgGR0ByKRqREF4caAdNPgFoCEdAlsLr4nF5wHV9lChoBkdAbswhzNliB2gHTZ4BaAhHQJbEBS9/SYx1fZQoaAZHQG0RPgeii7FoB010AWgIR0CWxFvvjOs1dX2UKGgGR0BwYK8SPEKmaAdNOgFoCEdAlsW0UoKD03V9lChoBkdAcHjxs2vSt2gHTWUBaAhHQJbGbDk2gnN1fZQoaAZHQHAV4uXeFcpoB00hAWgIR0CWyWc8TzundX2UKGgGR0BwpWmqHXVcaAdNJAFoCEdAlsxMMAmzB3V9lChoBkdAcB6ri2lVLmgHTWoBaAhHQJbMyLDQ7cR1fZQoaAZHQHHQsAeaKDVoB01gAWgIR0CWzRKneiztdX2UKGgGR0BsKRYoy9EkaAdNKQFoCEdAls2oPsiSq3V9lChoBkdAcJoHim2srGgHTToBaAhHQJbRmB06o2p1fZQoaAZHQG9kBz/6wdNoB02zAWgIR0CW0cNgjQiSdX2UKGgGR0BvNyx5cC5maAdNQAFoCEdAltOWjbi6x3V9lChoBkdAcMEK3uuzQmgHTU0BaAhHQJbVJGqgh8p1fZQoaAZHQHFsP6CUX55oB004AWgIR0CW1T9HMEA6dX2UKGgGR0Bx1V2zOX3QaAdNuwFoCEdAltXiiM5wO3V9lChoBkdAcPyAsCkoF2gHTWoBaAhHQJbYJx82Ji11fZQoaAZHQG8datT1kDpoB01RAWgIR0CW2Rp3X7LudX2UKGgGR0ByKCp71Iy1aAdNFQFoCEdAltzqhxo7FXV9lChoBkdAcg69xZMcqGgHTasBaAhHQJbddBHCoCN1fZQoaAZHQHDbssYl6Z9oB01vAWgIR0CW3fvq1PWQdX2UKGgGR0BwyezyBkI5aAdNSAFoCEdAlt7swtapxXV9lChoBkdAcQSKxLTQV2gHTXcBaAhHQJbhPGHYYix1fZQoaAZHQDG32PDHfdhoB00DAWgIR0CW4d+5e7cxdX2UKGgGR0BwPaf16E8JaAdNdgFoCEdAluHgMlTm4nV9lChoBkdAcNAzmfXf7GgHTSsBaAhHQJbh9EhJRO11fZQoaAZHQG8HVNpM6BBoB003AWgIR0CW4mvwVj7RdX2UKGgGR0ByXZfdAPd3aAdNGQFoCEdAluQKkdmxuHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53505da75111f0c507d15508f3a560a599da8950a1b12752228824369985418b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1450dad2738089715f0c7ed419fe0a9933e5e1b9ffe91a718cbb68f8fd8160ce
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.14970427084006, "std_reward": 19.788477681129127, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-01T02:02:46.297916"}