azizkaroui commited on
Commit
760312f
·
1 Parent(s): 5dd4d9f
Load.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.utils.data import DataLoader, Dataset
5
+ from torchvision import transforms
6
+ from PIL import Image
7
+
8
+ # model architecture
9
+ class ImageEnhancementModel(nn.Module):
10
+ def __init__(self):
11
+ super(ImageEnhancementModel, self).__init__()
12
+
13
+ # Define the layers here
14
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)
15
+ self.relu1 = nn.ReLU()
16
+ self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1)
17
+ self.relu2 = nn.ReLU()
18
+ self.conv3 = nn.Conv2d(in_channels=64, out_channels=3, kernel_size=3, padding=1)
19
+
20
+ def forward(self, x):
21
+ # forward pass
22
+ x = self.relu1(self.conv1(x))
23
+ x = self.relu2(self.conv2(x))
24
+ x = self.conv3(x)
25
+ return x
26
+
27
+ class CustomDataset(Dataset):
28
+ def __init__(self, data_dir):
29
+ self.data_dir = data_dir
30
+ self.image_files = os.listdir(data_dir)
31
+ self.transform = transforms.Compose([transforms.ToTensor()])
32
+
33
+ def __len__(self):
34
+ return len(self.image_files)
35
+
36
+ def __getitem__(self, idx):
37
+ img_name = os.path.join(self.data_dir, self.image_files[idx])
38
+ image = Image.open(img_name)
39
+
40
+
41
+ if image.mode != 'RGB':
42
+ image = image.convert('RGB')
43
+
44
+ image = self.transform(image)
45
+ return image
46
+
47
+
48
+ # Hyperparameters
49
+ batch_size = 8
50
+ learning_rate = 0.001
51
+ num_epochs = 50
52
+
53
+ model = ImageEnhancementModel()
54
+
55
+ # loss function and optimizer
56
+ criterion = nn.MSELoss()
57
+ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
58
+
59
+ # DataLoader
60
+ train_dataset = CustomDataset(data_dir='before')
61
+ train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
62
+
63
+ # Training loop
64
+ for epoch in range(num_epochs):
65
+ for data in train_loader:
66
+ # Forward pass
67
+ outputs = model(data)
68
+
69
+ # Load the corresponding "after enhancement" images
70
+ target_data = CustomDataset(data_dir='after') # Load the "after" images
71
+ target_data = next(iter(target_data)) # Get the corresponding target image
72
+
73
+ loss = criterion(outputs, target_data) # Use the "after" images as targets
74
+
75
+ # Backpropagation and optimization
76
+ optimizer.zero_grad()
77
+ loss.backward()
78
+ optimizer.step()
79
+
80
+ print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
81
+
82
+ # Save the trained model
83
+ torch.save(model.state_dict(), 'image_enhancement_model.pth')
84
+
85
+ # Inference (enhance images)
86
+ model.eval() # Set the model to evaluation mode
87
+
88
+ # Load and preprocess an input image
89
+ input_image = Image.open('testb.jpg')
90
+ input_image = train_dataset.transform(input_image).unsqueeze(0)
91
+
92
+ # Use the trained model to enhance the input image
93
+ enhanced_image = model(input_image)
94
+
95
+ # Save
96
+ output_image = enhanced_image.squeeze().permute(1, 2, 0).detach().cpu().numpy()
97
+ output_image = (output_image + 1) / 2.0 * 255.0 # Denormalize
98
+ output_image = output_image.astype('uint8')
99
+ Image.fromarray(output_image).save('enhanced_image.jpg')
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Neural Style Transfer (NST) for Image Enhancement
2
+
3
+ Enhance your images using Neural Style Transfer by combining the content of an input image with the style of a reference image.
4
+
5
+ ## Description
6
+
7
+ This project uses TensorFlow to perform Neural Style Transfer (NST) on an input image using a style reference image. NST is a technique for enhancing an image by transferring the artistic style of one image (the reference style image) to the content of another image (the input image). The result is a new image that combines the content of the input image with the artistic style of the reference image.
8
+
9
+ ## Prerequisites
10
+
11
+ - Python 3.x
12
+ - TensorFlow 2.x
13
+ - NumPy
14
+ - Matplotlib
15
+ - Pillow
16
+
17
+ You can install the required Python packages by running:
18
+
19
+
20
+ ## Usage
21
+
22
+ 1. Prepare your input image and style reference image and save them in the project directory.
23
+
24
+ 2. Update the paths to your input and style reference images in the script (`input_image_path` and `style_image_path` variables).
25
+
26
+ 3. Run the script:
27
+
28
+
29
+ 4. The script will optimize the generated image to combine the content of the input image with the style of the reference image.
30
+
31
+ 5. The final enhanced image will be saved as `enhanced_image.jpg` in the project directory.
32
+
33
+ ## Examples
34
+
35
+ Here are some example results of using NST to enhance images:
36
+
37
+ ![Input Image](examples/input_image.jpg)
38
+ ![Style Reference Image](examples/style_image.jpg)
39
+ ![Enhanced Image](examples/enhanced_image.jpg)
40
+
41
+ ## License
42
+
43
+ This project is licensed under the Aziz Karoui License - see the [LICENSE](LICENSE) file for details.
44
+
45
+ ## Acknowledgments
46
+
47
+ - This project is based on the Neural Style Transfer technique developed by Gatys et al.
48
+ - Pre-trained VGG models provided by the Keras team.
49
+
50
+ Feel free to modify this README file to include more details, usage instructions, or additional sections relevant to your project.
ReadMe.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Neural Style Transfer (NST) for Image Enhancement
2
+
3
+ Enhance your images using Neural Style Transfer by combining the content of an input image with the style of a reference image.
4
+
5
+ ## Description
6
+
7
+ This project uses TensorFlow to perform Neural Style Transfer (NST) on an input image using a style reference image. NST is a technique for enhancing an image by transferring the artistic style of one image (the reference style image) to the content of another image (the input image). The result is a new image that combines the content of the input image with the artistic style of the reference image.
8
+
9
+ ## Prerequisites
10
+
11
+ - Python 3.x
12
+ - TensorFlow 2.x
13
+ - NumPy
14
+ - Matplotlib
15
+ - Pillow
16
+
17
+ You can install the required Python packages by running:
18
+
19
+
20
+ ## Usage
21
+
22
+ 1. Prepare your input image and style reference image and save them in the project directory.
23
+
24
+ 2. Update the paths to your input and style reference images in the script (`input_image_path` and `style_image_path` variables).
25
+
26
+ 3. Run the script:
27
+
28
+
29
+ 4. The script will optimize the generated image to combine the content of the input image with the style of the reference image.
30
+
31
+ 5. The final enhanced image will be saved as `enhanced_image.jpg` in the project directory.
32
+
33
+ ## Examples
34
+
35
+ Here are some example results of using NST to enhance images:
36
+
37
+ ![Input Image](examples/input_image.jpg)
38
+ ![Style Reference Image](examples/style_image.jpg)
39
+ ![Enhanced Image](examples/enhanced_image.jpg)
40
+
41
+ ## License
42
+
43
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
44
+
45
+ ## Acknowledgments
46
+
47
+ - This project is based on the Neural Style Transfer technique developed by Gatys et al.
48
+ - Pre-trained VGG models provided by the Keras team.
49
+
50
+ Feel free to modify this README file to include more details, usage instructions, or additional sections relevant to your project.
aziz-model-64p-v2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf42fb8b4cc29610c6a53554fe7ebe4cd99edbb464badf10da4053e0b25efc5c
3
+ size 164135
enhanced_image.jpg ADDED
image_enhancement_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf6c6fefb164747518c9d5e47f4ea218b5da2f37843c0b240ec92987fcc68925
3
+ size 164247
layer-model-8p-v1.0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83a123c480a5c3fd7a0238565ce97ca3962f30fef18c46a1d441c5612550d411
3
+ size 22759
layer-model-8p-v2.0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12c4aa0f97d4acc7fdb39b95dc7682bb4e3d8c9028f32a827b40578186de44f3
3
+ size 22759
model-8p-v3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f659eb14a0d36491a8318277df1bab610a4a566a4a95cc84ab2659802c55c95e
3
+ size 15799
pixel.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ from tensorflow.keras.preprocessing import image as tf_image
5
+ from tensorflow.keras.applications import VGG19
6
+ from tensorflow.keras.models import Model
7
+ from tensorflow.keras import layers
8
+ from tensorflow.keras.optimizers import Adam
9
+
10
+ # Load a pre-trained VGG19 model without the fully connected layers (used for feature extraction)
11
+ base_model = VGG19(weights="imagenet", include_top=False)
12
+
13
+ # Specify the layers to use for style and content representations
14
+ style_layers = ["block1_conv1", "block2_conv1", "block3_conv1", "block4_conv1", "block5_conv1"]
15
+ content_layer = "block4_conv2"
16
+
17
+ # Create a model that extracts style and content features
18
+ style_extractor = Model(inputs=base_model.input, outputs=[base_model.get_layer(layer).output for layer in style_layers])
19
+ content_extractor = Model(inputs=base_model.input, outputs=base_model.get_layer(content_layer).output)
20
+
21
+ # Define a function to compute the Gram matrix for style representation
22
+ def gram_matrix(input_tensor):
23
+ result = tf.linalg.einsum("bijc,bijd->bcd", input_tensor, input_tensor)
24
+ input_shape = tf.shape(input_tensor)
25
+ num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
26
+ return result / num_locations
27
+
28
+ # Define a custom loss function that computes the style loss
29
+ def style_loss(style_targets, predicted_styles):
30
+ loss = 0
31
+ for style_target, predicted_style in zip(style_targets, predicted_styles):
32
+ loss += tf.reduce_mean(tf.square(gram_matrix(style_target) - gram_matrix(predicted_style)))
33
+ return loss
34
+
35
+ # Define a custom loss function that computes the content loss
36
+ def content_loss(content_target, predicted_content):
37
+ return tf.reduce_mean(tf.square(content_target - predicted_content))
38
+
39
+ # Load your input and style images
40
+ input_image_path = "input_image.jpg"
41
+ style_image_path = "style_image.jpg"
42
+
43
+ input_image = tf_image.load_img(input_image_path)
44
+ style_image = tf_image.load_img(style_image_path)
45
+
46
+ input_image = tf_image.img_to_array(input_image)
47
+ style_image = tf_image.img_to_array(style_image)
48
+
49
+ # Preprocess the images (VGG19 requires specific preprocessing)
50
+ input_image = tf_image.smart_resize(input_image, (256, 256))
51
+ style_image = tf_image.smart_resize(style_image, (256, 256))
52
+
53
+ input_image = tf_image.img_to_array(input_image)
54
+ style_image = tf_image.img_to_array(style_image)
55
+
56
+ input_image = tf.keras.applications.vgg19.preprocess_input(input_image)
57
+ style_image = tf.keras.applications.vgg19.preprocess_input(style_image)
58
+
59
+ input_image = np.expand_dims(input_image, axis=0)
60
+ style_image = np.expand_dims(style_image, axis=0)
61
+
62
+ # Define a variable to store the generated image and create a TensorFlow variable for it
63
+ generated_image = tf.Variable(input_image, dtype=tf.float32)
64
+
65
+ # Define optimizer and hyperparameters
66
+ optimizer = Adam(learning_rate=10.0)
67
+
68
+ # Number of iterations for optimization
69
+ num_iterations = 1000
70
+
71
+ # Extract style and content features from the style and input images
72
+ style_features = style_extractor(style_image)
73
+ content_features = content_extractor(input_image)
74
+
75
+ # Define target style features (the same style for all layers)
76
+ style_targets = [style_extractor(tf.constant(style_image)) for _ in style_layers]
77
+
78
+ # Main optimization loop
79
+ for iteration in range(num_iterations):
80
+ with tf.GradientTape() as tape:
81
+ # Extract features from the generated image
82
+ generated_features = style_extractor(generated_image)
83
+
84
+ # Compute style loss and content loss
85
+ current_style_loss = style_loss(style_targets, generated_features)
86
+ current_content_loss = content_loss(content_features, generated_features[-1])
87
+
88
+ # Total loss as a combination of style and content loss
89
+ total_loss = current_style_loss + current_content_loss
90
+
91
+ # Compute gradients
92
+ gradients = tape.gradient(total_loss, generated_image)
93
+
94
+ # Update the generated image using the gradients
95
+ optimizer.apply_gradients([(gradients, generated_image)])
96
+
97
+ # Clip pixel values to the [0, 255] range
98
+ generated_image.assign(tf.clip_by_value(generated_image, clip_value_min=0.0, clip_value_max=255.0))
99
+
100
+ # Print the progress
101
+ if iteration % 100 == 0:
102
+ print(f"Iteration {iteration}, Total loss: {total_loss}")
103
+
104
+ # Convert the final generated image to a NumPy array
105
+ final_image = tf_image.img_to_array(generated_image[0])
106
+
107
+ # Clip pixel values to the [0, 255] range and cast to uint8
108
+ final_image = np.clip(final_image, 0, 255).astype(np.uint8)
109
+
110
+ # Save the final image
111
+ final_image_path = "enhanced_image.jpg"
112
+ tf.keras.preprocessing.image.save_img(final_image_path, final_image[0])
113
+
114
+ # Display the final enhanced image
115
+ plt.imshow(final_image[0])
116
+ plt.axis("off")
117
+ plt.show()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ tensorflow==2.6.0
2
+ numpy==1.19.5
3
+ matplotlib==3.3.4
4
+ Pillow==8.2.0
script.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageEnhance
2
+
3
+ # Open the input image
4
+ image = Image.open('dog.jpg')
5
+
6
+ # Resize the image
7
+ width, height = image.size
8
+ target_width = width * 2
9
+ target_height = height * 2
10
+ resized_image = image.resize((target_width, target_height), Image.BILINEAR)
11
+
12
+ # Apply image enhancements
13
+ enhancer = ImageEnhance.Brightness(resized_image)
14
+ enhanced_image = enhancer.enhance(1) # Adjust brightness (increase or decrease the value as desired)
15
+
16
+ # Save the final enhanced image
17
+ enhanced_image.save('dogii.jpg')
testb.jpg ADDED