# Video Moment Retrieval in Practical Setting: A Dataset of Ranked Moments for Imprecise Queries The benchmark and dataset for the paper "Video Moment Retrieval in Practical Settings: A Dataset of Ranked Moments for Imprecise Queries" is coming soon. We recommend cloning the code, data, and feature files from the Hugging Face repository at [TVR-Ranking](https://huggingface.co/axgroup/TVR-Ranking). This repository only includes the code for ReLoCLNet. You can download the other baseline models from [XML](https://huggingface.co/LiangRenjie/XML_RVMR) and [CONQUER](https://huggingface.co/LiangRenjie/CONQUER_RVMR). ![TVR_Ranking_overview](./figures/taskComparisonV.png) ## Getting started ### 1. Install the requisites The Python packages we used are listed as follows. Commonly, the most recent versions work well. ```shell conda create --name tvr_ranking python=3.11 conda activate tvr_ranking pip install pytorch # 2.2.1+cu121 pip install tensorboard pip install h5py pandas tqdm easydict pyyaml ``` ### 2. Download full dataset For the full dataset, please go down from Hugging Face [TVR-Ranking](https://huggingface.co/axgroup/TVR-Ranking). \ The detailed introduction and raw annotations is available at [Dataset Introduction](data/TVR_Ranking/readme.md). ``` TVR_Ranking/ -val.json -test.json -train_top01.json -train_top20.json -train_top40.json -video_corpus.json ``` ### 3. Download features For the query BERT features, you can download them from Hugging Face [TVR-Ranking](https://huggingface.co/axgroup/TVR-Ranking). \ For the video and subtitle features, please request them at [TVR](https://tvr.cs.unc.edu/). ```shell tar -xf tvr_feature_release.tar.gz -C data/TVR_Ranking/feature ``` ### 4. Training ```shell # modify the data path first sh run_top20.sh ``` ### 5. Inferring The checkpoint can all be accessed from Hugging Face [TVR-Ranking](https://huggingface.co/axgroup/TVR-Ranking). ```shell sh infer_top20.sh ``` ## Experiment Results ### Baseline The baseline performance of $NDGC@40$ was shown as follows. Top $N$ moments were comprised of a pseudo training set by the query-caption similarity. | **Model** | **Train Set Top N** | **IoU=0.3** | |**IoU=0.5** | |**IoU=0.7** | | |----------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------| | | | **Val** | **Test** | **Val** | **Test** | **Val** | **Test** | | **XML** | 1 | 0.1077 | 0.1016 | 0.0775 | 0.0727 | 0.0273 | 0.0294 | | | 20 | 0.2580 | 0.2512 | 0.1874 | 0.1853 | 0.0705 | 0.0753 | | | 40 | 0.2408 | 0.2432 | 0.1740 | 0.1791 | 0.0666 | 0.0720 | | **ReLoCLNet** | 1 | 0.1533 | 0.1489 | 0.1321 | 0.1304 | 0.0878 | 0.0869 | | | 20 | 0.4039 | 0.4031 | 0.3656 | 0.3648 | 0.2542 | 0.2567 | | | 40 | 0.4725 | 0.4735 | 0.4337 | 0.4337 | 0.3015 | 0.3079 | ### ReLoCLNet Performance | **Model** | **Train Set Top N** | **IoU=0.3** | |**IoU=0.5** | |**IoU=0.7** | | |------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------| | | | **Val** | **Test** | **Val** | **Test** | **Val** | **Test** | | **NDCG@10** | | | | | | | | | ReLoCLNet | 1 | 0.1575 | 0.1525 | 0.1358 | 0.1349 | 0.0908 | 0.0916 | | ReLoCLNet | 20 | 0.3751 | 0.3751 | 0.3407 | 0.3397 | 0.2316 | 0.2338 | | ReLoCLNet | 40 | 0.4339 | 0.4353 | 0.3984 | 0.3986 | 0.2693 | 0.2807 | | **NDCG@20** | | | | | | | | | ReLoCLNet | 1 | 0.1504 | 0.1439 | 0.1303 | 0.1269 | 0.0866 | 0.0849 | | ReLoCLNet | 20 | 0.3815 | 0.3792 | 0.3462 | 0.3427 | 0.2381 | 0.2386 | | ReLoCLNet | 40 | 0.4418 | 0.4439 | 0.4060 | 0.4059 | 0.2787 | 0.2877 | | **NDCG@40** | | | | | | | | | ReLoCLNet | 1 | 0.1533 | 0.1489 | 0.1321 | 0.1304 | 0.0878 | 0.0869 | | ReLoCLNet | 20 | 0.4039 | 0.4031 | 0.3656 | 0.3648 | 0.2542 | 0.2567 | | ReLoCLNet | 40 | 0.4725 | 0.4735 | 0.4337 | 0.4337 | 0.3015 | 0.3079 | ## Citation If you feel this project helpful to your research, please cite our work. ``` ```