--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: doc-topic-model_eval-03_train-02 results: [] --- # doc-topic-model_eval-03_train-02 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0378 - Accuracy: 0.9877 - F1: 0.6237 - Precision: 0.7228 - Recall: 0.5485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0944 | 0.4931 | 1000 | 0.0898 | 0.9814 | 0.0 | 0.0 | 0.0 | | 0.0769 | 0.9862 | 2000 | 0.0686 | 0.9815 | 0.0014 | 1.0 | 0.0007 | | 0.0607 | 1.4793 | 3000 | 0.0560 | 0.9822 | 0.1055 | 0.7889 | 0.0565 | | 0.0535 | 1.9724 | 4000 | 0.0501 | 0.9844 | 0.3655 | 0.7509 | 0.2415 | | 0.0466 | 2.4655 | 5000 | 0.0451 | 0.9855 | 0.4766 | 0.7195 | 0.3563 | | 0.0441 | 2.9586 | 6000 | 0.0422 | 0.9862 | 0.5028 | 0.7586 | 0.3760 | | 0.0391 | 3.4517 | 7000 | 0.0407 | 0.9864 | 0.5452 | 0.7205 | 0.4385 | | 0.0372 | 3.9448 | 8000 | 0.0393 | 0.9868 | 0.5492 | 0.7506 | 0.4330 | | 0.0336 | 4.4379 | 9000 | 0.0385 | 0.9870 | 0.5695 | 0.7416 | 0.4622 | | 0.0337 | 4.9310 | 10000 | 0.0378 | 0.9873 | 0.5876 | 0.7361 | 0.4889 | | 0.0297 | 5.4241 | 11000 | 0.0371 | 0.9874 | 0.6048 | 0.7266 | 0.5179 | | 0.0296 | 5.9172 | 12000 | 0.0379 | 0.9873 | 0.5827 | 0.7472 | 0.4776 | | 0.0263 | 6.4103 | 13000 | 0.0377 | 0.9875 | 0.6168 | 0.7152 | 0.5422 | | 0.0272 | 6.9034 | 14000 | 0.0376 | 0.9875 | 0.6209 | 0.7090 | 0.5523 | | 0.0234 | 7.3964 | 15000 | 0.0377 | 0.9878 | 0.6221 | 0.7277 | 0.5433 | | 0.0243 | 7.8895 | 16000 | 0.0378 | 0.9877 | 0.6237 | 0.7228 | 0.5485 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1