fix metrics and bump autrainer version to 0.5.0
Browse files- README.md +6 -6
- _best/dev.yaml +20 -20
- _test/test_holistic.yaml +20 -20
- file_handler.yaml +1 -1
- inference_transform.yaml +1 -1
- model.yaml +1 -1
- preprocess_file_handler.yaml +1 -1
- preprocess_pipeline.yaml +3 -3
- target_transform.yaml +1 -1
README.md
CHANGED
@@ -21,16 +21,16 @@ model-index:
|
|
21 |
metrics:
|
22 |
- type: accuracy
|
23 |
name: Accuracy
|
24 |
-
value: 0.
|
25 |
- type: f1-micro
|
26 |
name: Micro F1
|
27 |
-
value: 0.
|
28 |
- type: f1-macro
|
29 |
name: Macro F1
|
30 |
-
value: 0.
|
31 |
- type: f1-weighted
|
32 |
name: Weighted F1
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
# ABGS Ecoacoustic Tagging Model
|
@@ -65,7 +65,7 @@ The model has been further trained (finetuned) on the training set of the EDANSA
|
|
65 |
|
66 |
### Features
|
67 |
|
68 |
-
The EDANSA2019 dataset was resampled to 32kHz, as this was the sampling rate of AudioSet, where the model was originally trained on. Log
|
69 |
|
70 |
### Training process
|
71 |
|
@@ -73,7 +73,7 @@ The model has been trained for 30 epochs. At the end of each epoch, the model wa
|
|
73 |
|
74 |
### Evaluation
|
75 |
|
76 |
-
The model has only been evaluated on in-domain data. The performance on the official test set reached a 0.
|
77 |
|
78 |
## Acknowledgments
|
79 |
|
|
|
21 |
metrics:
|
22 |
- type: accuracy
|
23 |
name: Accuracy
|
24 |
+
value: 0.6968486462494452
|
25 |
- type: f1-micro
|
26 |
name: Micro F1
|
27 |
+
value: 0.8765212229148116
|
28 |
- type: f1-macro
|
29 |
name: Macro F1
|
30 |
+
value: 0.8614431334513389
|
31 |
- type: f1-weighted
|
32 |
name: Weighted F1
|
33 |
+
value: 0.8706722471821455
|
34 |
---
|
35 |
|
36 |
# ABGS Ecoacoustic Tagging Model
|
|
|
65 |
|
66 |
### Features
|
67 |
|
68 |
+
The EDANSA2019 dataset was resampled to 32kHz, as this was the sampling rate of AudioSet, where the model was originally trained on. Log-Mel spectrograms were then extracted using torchlibrosa using the parameters that the upstream model was trained on.
|
69 |
|
70 |
### Training process
|
71 |
|
|
|
73 |
|
74 |
### Evaluation
|
75 |
|
76 |
+
The model has only been evaluated on in-domain data. The performance on the official test set reached a 0.87 (weighted) f1-score.
|
77 |
|
78 |
## Acknowledgments
|
79 |
|
_best/dev.yaml
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
ml-accuracy:
|
2 |
-
Anth: 0.
|
3 |
-
Bio: 0.
|
4 |
-
Geo: 0.
|
5 |
-
Sil: 0.
|
6 |
-
all: 0.
|
7 |
ml-f1-micro:
|
8 |
-
Anth: 0.
|
9 |
-
Bio: 0.
|
10 |
-
Geo: 0.
|
11 |
-
Sil: 0.
|
12 |
-
all: 0.
|
13 |
ml-f1-macro:
|
14 |
-
Anth: 0.
|
15 |
-
Bio: 0.
|
16 |
-
Geo: 0.
|
17 |
-
Sil: 0.
|
18 |
-
all: 0.
|
19 |
ml-f1-weighted:
|
20 |
-
Anth: 0.
|
21 |
-
Bio: 0.
|
22 |
-
Geo: 0.
|
23 |
-
Sil: 0.
|
24 |
-
all: 0.
|
25 |
dev_loss:
|
26 |
all: 0.18468653024007967
|
27 |
iteration: 10
|
|
|
1 |
ml-accuracy:
|
2 |
+
Anth: 0.9679658302189001
|
3 |
+
Bio: 0.9514148424986653
|
4 |
+
Geo: 0.8713294180459157
|
5 |
+
Sil: 0.9615589962626802
|
6 |
+
all: 0.807261078483716
|
7 |
ml-f1-micro:
|
8 |
+
Anth: 0.9635479951397325
|
9 |
+
Bio: 0.952628839146278
|
10 |
+
Geo: 0.8301620859760395
|
11 |
+
Sil: 0.7049180327868853
|
12 |
+
all: 0.9112810707456978
|
13 |
ml-f1-macro:
|
14 |
+
Anth: 0.9635479951397325
|
15 |
+
Bio: 0.952628839146278
|
16 |
+
Geo: 0.8301620859760395
|
17 |
+
Sil: 0.7049180327868853
|
18 |
+
all: 0.8628142382622339
|
19 |
ml-f1-weighted:
|
20 |
+
Anth: 0.9635479951397325
|
21 |
+
Bio: 0.952628839146278
|
22 |
+
Geo: 0.8301620859760395
|
23 |
+
Sil: 0.7049180327868853
|
24 |
+
all: 0.9078199657149384
|
25 |
dev_loss:
|
26 |
all: 0.18468653024007967
|
27 |
iteration: 10
|
_test/test_holistic.yaml
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
ml-accuracy:
|
2 |
-
Anth: 0.
|
3 |
-
Bio: 0.
|
4 |
-
Geo: 0.
|
5 |
-
Sil: 0.
|
6 |
-
all: 0.
|
7 |
ml-f1-micro:
|
8 |
-
Anth: 0.
|
9 |
-
Bio: 0.
|
10 |
-
Geo: 0.
|
11 |
-
Sil: 0.
|
12 |
-
all: 0.
|
13 |
ml-f1-macro:
|
14 |
-
Anth: 0.
|
15 |
-
Bio: 0.
|
16 |
-
Geo: 0.
|
17 |
-
Sil: 0.
|
18 |
-
all: 0.
|
19 |
ml-f1-weighted:
|
20 |
-
Anth: 0.
|
21 |
-
Bio: 0.
|
22 |
-
Geo: 0.
|
23 |
-
Sil: 0.
|
24 |
-
all: 0.
|
25 |
loss:
|
26 |
all: 0.29107842086420826
|
|
|
1 |
ml-accuracy:
|
2 |
+
Anth: 0.9849090102086108
|
3 |
+
Bio: 0.9409675987572126
|
4 |
+
Geo: 0.7749667110519307
|
5 |
+
Sil: 0.9298712827341322
|
6 |
+
all: 0.6968486462494452
|
7 |
ml-f1-micro:
|
8 |
+
Anth: 0.9621380846325167
|
9 |
+
Bio: 0.9547465124191903
|
10 |
+
Geo: 0.7757629367536488
|
11 |
+
Sil: 0.7531249999999999
|
12 |
+
all: 0.8765212229148116
|
13 |
ml-f1-macro:
|
14 |
+
Anth: 0.9621380846325167
|
15 |
+
Bio: 0.9547465124191903
|
16 |
+
Geo: 0.7757629367536488
|
17 |
+
Sil: 0.7531249999999999
|
18 |
+
all: 0.8614431334513389
|
19 |
ml-f1-weighted:
|
20 |
+
Anth: 0.9621380846325167
|
21 |
+
Bio: 0.9547465124191903
|
22 |
+
Geo: 0.7757629367536488
|
23 |
+
Sil: 0.7531249999999999
|
24 |
+
all: 0.8706722471821455
|
25 |
loss:
|
26 |
all: 0.29107842086420826
|
file_handler.yaml
CHANGED
@@ -1 +1 @@
|
|
1 |
-
$autrainer.datasets.utils.file_handlers.NumpyFileHandler==0.
|
|
|
1 |
+
$autrainer.datasets.utils.file_handlers.NumpyFileHandler==0.5.0: {}
|
inference_transform.yaml
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
$autrainer.transforms.smart_compose.SmartCompose==0.
|
2 |
transforms: []
|
|
|
1 |
+
$autrainer.transforms.smart_compose.SmartCompose==0.5.0:
|
2 |
transforms: []
|
model.yaml
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
$autrainer.models.cnn_10.Cnn10==0.
|
2 |
output_dim: 4
|
3 |
segmentwise: false
|
4 |
in_channels: 1
|
|
|
1 |
+
$autrainer.models.cnn_10.Cnn10==0.5.0:
|
2 |
output_dim: 4
|
3 |
segmentwise: false
|
4 |
in_channels: 1
|
preprocess_file_handler.yaml
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
$autrainer.datasets.utils.file_handlers.AudioFileHandler==0.
|
2 |
target_sample_rate: 32000
|
|
|
1 |
+
$autrainer.datasets.utils.file_handlers.AudioFileHandler==0.5.0:
|
2 |
target_sample_rate: 32000
|
preprocess_pipeline.yaml
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
$autrainer.transforms.smart_compose.SmartCompose==0.
|
2 |
transforms:
|
3 |
-
- $autrainer.transforms.specific_transforms.StereoToMono==0.
|
4 |
order: -95
|
5 |
-
- $autrainer.transforms.specific_transforms.PannMel==0.
|
6 |
window_size: 1024
|
7 |
hop_size: 320
|
8 |
sample_rate: 32000
|
|
|
1 |
+
$autrainer.transforms.smart_compose.SmartCompose==0.5.0:
|
2 |
transforms:
|
3 |
+
- $autrainer.transforms.specific_transforms.StereoToMono==0.5.0:
|
4 |
order: -95
|
5 |
+
- $autrainer.transforms.specific_transforms.PannMel==0.5.0:
|
6 |
window_size: 1024
|
7 |
hop_size: 320
|
8 |
sample_rate: 32000
|
target_transform.yaml
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
$autrainer.datasets.utils.target_transforms.MultiLabelEncoder==0.
|
2 |
threshold: 0.5
|
3 |
labels:
|
4 |
- Anth
|
|
|
1 |
+
$autrainer.datasets.utils.target_transforms.MultiLabelEncoder==0.5.0:
|
2 |
threshold: 0.5
|
3 |
labels:
|
4 |
- Anth
|