ramppdev commited on
Commit
ec6a65a
·
1 Parent(s): ee584b0

fix metrics and bump autrainer version to 0.5.0

Browse files
README.md CHANGED
@@ -21,16 +21,16 @@ model-index:
21
  metrics:
22
  - type: accuracy
23
  name: Accuracy
24
- value: 0.902352418996893
25
  - type: f1-micro
26
  name: Micro F1
27
- value: 0.902352418996893
28
  - type: f1-macro
29
  name: Macro F1
30
- value: 0.8717470319118755
31
  - type: f1-weighted
32
  name: Weighted F1
33
- value: 0.8999580955196549
34
  ---
35
 
36
  # ABGS Ecoacoustic Tagging Model
@@ -65,7 +65,7 @@ The model has been further trained (finetuned) on the training set of the EDANSA
65
 
66
  ### Features
67
 
68
- The EDANSA2019 dataset was resampled to 32kHz, as this was the sampling rate of AudioSet, where the model was originally trained on. Log mel spectrograms were then extracted using torchlibrosa using the parameters that the upstream model was trained on.
69
 
70
  ### Training process
71
 
@@ -73,7 +73,7 @@ The model has been trained for 30 epochs. At the end of each epoch, the model wa
73
 
74
  ### Evaluation
75
 
76
- The model has only been evaluated on in-domain data. The performance on the official test set reached a 0.9 (weighted) f1-score.
77
 
78
  ## Acknowledgments
79
 
 
21
  metrics:
22
  - type: accuracy
23
  name: Accuracy
24
+ value: 0.6968486462494452
25
  - type: f1-micro
26
  name: Micro F1
27
+ value: 0.8765212229148116
28
  - type: f1-macro
29
  name: Macro F1
30
+ value: 0.8614431334513389
31
  - type: f1-weighted
32
  name: Weighted F1
33
+ value: 0.8706722471821455
34
  ---
35
 
36
  # ABGS Ecoacoustic Tagging Model
 
65
 
66
  ### Features
67
 
68
+ The EDANSA2019 dataset was resampled to 32kHz, as this was the sampling rate of AudioSet, where the model was originally trained on. Log-Mel spectrograms were then extracted using torchlibrosa using the parameters that the upstream model was trained on.
69
 
70
  ### Training process
71
 
 
73
 
74
  ### Evaluation
75
 
76
+ The model has only been evaluated on in-domain data. The performance on the official test set reached a 0.87 (weighted) f1-score.
77
 
78
  ## Acknowledgments
79
 
_best/dev.yaml CHANGED
@@ -1,27 +1,27 @@
1
  ml-accuracy:
2
- Anth: 0.9706353443673251
3
- Bio: 0.9508809396689802
4
- Geo: 0.8510411105178858
5
- Sil: 0.9583555792845702
6
- all: 0.9327282434596903
7
  ml-f1-micro:
8
- Anth: 0.9706353443673251
9
- Bio: 0.9508809396689802
10
- Geo: 0.8510411105178857
11
- Sil: 0.9583555792845702
12
- all: 0.9327282434596903
13
  ml-f1-macro:
14
- Anth: 0.9701027011323622
15
- Bio: 0.9508617641355553
16
- Geo: 0.8394133823871512
17
- Sil: 0.8236346516007533
18
- all: 0.8960031248139555
19
  ml-f1-weighted:
20
- Anth: 0.9706119080649868
21
- Bio: 0.9508871587609018
22
- Geo: 0.8468652795820465
23
- Sil: 0.9547344914299045
24
- all: 0.93077470945946
25
  dev_loss:
26
  all: 0.18468653024007967
27
  iteration: 10
 
1
  ml-accuracy:
2
+ Anth: 0.9679658302189001
3
+ Bio: 0.9514148424986653
4
+ Geo: 0.8713294180459157
5
+ Sil: 0.9615589962626802
6
+ all: 0.807261078483716
7
  ml-f1-micro:
8
+ Anth: 0.9635479951397325
9
+ Bio: 0.952628839146278
10
+ Geo: 0.8301620859760395
11
+ Sil: 0.7049180327868853
12
+ all: 0.9112810707456978
13
  ml-f1-macro:
14
+ Anth: 0.9635479951397325
15
+ Bio: 0.952628839146278
16
+ Geo: 0.8301620859760395
17
+ Sil: 0.7049180327868853
18
+ all: 0.8628142382622339
19
  ml-f1-weighted:
20
+ Anth: 0.9635479951397325
21
+ Bio: 0.952628839146278
22
+ Geo: 0.8301620859760395
23
+ Sil: 0.7049180327868853
24
+ all: 0.9078199657149384
25
  dev_loss:
26
  all: 0.18468653024007967
27
  iteration: 10
_test/test_holistic.yaml CHANGED
@@ -1,26 +1,26 @@
1
  ml-accuracy:
2
- Anth: 0.9853528628495339
3
- Bio: 0.9427430093209055
4
- Geo: 0.7696404793608522
5
- Sil: 0.9116733244562805
6
- all: 0.902352418996893
7
  ml-f1-micro:
8
- Anth: 0.9853528628495338
9
- Bio: 0.9427430093209055
10
- Geo: 0.7696404793608522
11
- Sil: 0.9116733244562805
12
- all: 0.902352418996893
13
  ml-f1-macro:
14
- Anth: 0.9769561143673973
15
- Bio: 0.937078388485209
16
- Geo: 0.7695603976552177
17
- Sil: 0.803393227139678
18
- all: 0.8717470319118755
19
  ml-f1-weighted:
20
- Anth: 0.9854084295674305
21
- Bio: 0.9426173150715926
22
- Geo: 0.769005545837607
23
- Sil: 0.9028010916019895
24
- all: 0.8999580955196549
25
  loss:
26
  all: 0.29107842086420826
 
1
  ml-accuracy:
2
+ Anth: 0.9849090102086108
3
+ Bio: 0.9409675987572126
4
+ Geo: 0.7749667110519307
5
+ Sil: 0.9298712827341322
6
+ all: 0.6968486462494452
7
  ml-f1-micro:
8
+ Anth: 0.9621380846325167
9
+ Bio: 0.9547465124191903
10
+ Geo: 0.7757629367536488
11
+ Sil: 0.7531249999999999
12
+ all: 0.8765212229148116
13
  ml-f1-macro:
14
+ Anth: 0.9621380846325167
15
+ Bio: 0.9547465124191903
16
+ Geo: 0.7757629367536488
17
+ Sil: 0.7531249999999999
18
+ all: 0.8614431334513389
19
  ml-f1-weighted:
20
+ Anth: 0.9621380846325167
21
+ Bio: 0.9547465124191903
22
+ Geo: 0.7757629367536488
23
+ Sil: 0.7531249999999999
24
+ all: 0.8706722471821455
25
  loss:
26
  all: 0.29107842086420826
file_handler.yaml CHANGED
@@ -1 +1 @@
1
- $autrainer.datasets.utils.file_handlers.NumpyFileHandler==0.4.0: {}
 
1
+ $autrainer.datasets.utils.file_handlers.NumpyFileHandler==0.5.0: {}
inference_transform.yaml CHANGED
@@ -1,2 +1,2 @@
1
- $autrainer.transforms.smart_compose.SmartCompose==0.4.0:
2
  transforms: []
 
1
+ $autrainer.transforms.smart_compose.SmartCompose==0.5.0:
2
  transforms: []
model.yaml CHANGED
@@ -1,4 +1,4 @@
1
- $autrainer.models.cnn_10.Cnn10==0.4.0:
2
  output_dim: 4
3
  segmentwise: false
4
  in_channels: 1
 
1
+ $autrainer.models.cnn_10.Cnn10==0.5.0:
2
  output_dim: 4
3
  segmentwise: false
4
  in_channels: 1
preprocess_file_handler.yaml CHANGED
@@ -1,2 +1,2 @@
1
- $autrainer.datasets.utils.file_handlers.AudioFileHandler==0.4.0:
2
  target_sample_rate: 32000
 
1
+ $autrainer.datasets.utils.file_handlers.AudioFileHandler==0.5.0:
2
  target_sample_rate: 32000
preprocess_pipeline.yaml CHANGED
@@ -1,8 +1,8 @@
1
- $autrainer.transforms.smart_compose.SmartCompose==0.4.0:
2
  transforms:
3
- - $autrainer.transforms.specific_transforms.StereoToMono==0.4.0:
4
  order: -95
5
- - $autrainer.transforms.specific_transforms.PannMel==0.4.0:
6
  window_size: 1024
7
  hop_size: 320
8
  sample_rate: 32000
 
1
+ $autrainer.transforms.smart_compose.SmartCompose==0.5.0:
2
  transforms:
3
+ - $autrainer.transforms.specific_transforms.StereoToMono==0.5.0:
4
  order: -95
5
+ - $autrainer.transforms.specific_transforms.PannMel==0.5.0:
6
  window_size: 1024
7
  hop_size: 320
8
  sample_rate: 32000
target_transform.yaml CHANGED
@@ -1,4 +1,4 @@
1
- $autrainer.datasets.utils.target_transforms.MultiLabelEncoder==0.4.0:
2
  threshold: 0.5
3
  labels:
4
  - Anth
 
1
+ $autrainer.datasets.utils.target_transforms.MultiLabelEncoder==0.5.0:
2
  threshold: 0.5
3
  labels:
4
  - Anth