File size: 5,088 Bytes
a47fde4 02bd8ed cda1892 a47fde4 1bccc5e a47fde4 72841b4 a47fde4 f257803 a47fde4 cda1892 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
language:
- en
license: cc-by-nc-4.0
model-index:
- name: Iambe-20b-DARE-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Iambe-20b-DARE-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.53
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Iambe-20b-DARE-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Iambe-20b-DARE-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.85
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Iambe-20b-DARE-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Iambe-20b-DARE-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 33.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=athirdpath/Iambe-20b-DARE-v2
name: Open LLM Leaderboard
---
<p align="center"><font size="5"> <i>Strange quirk: This model seems to need a context size of EXACTLY 4096 ONLY. I'm assuming this is a dares_ties effect?</i> </font></p>
<p align="center"><img src="https://i.ibb.co/pbpJHpk/iambe-sml.png"/><font size="6"> <b>Iambe-20b-DARE-v2</b> </font></p>
<p align="center"><font size="4"> <b>Alpaca prompt formatting</b> </font></p>
### Description
Named after a charming daughter of Echo and Pan in Greek myth, Iambe-20b-DARE-v2 is an improved [DARE](https://github.com/yule-BUAA/MergeLM) merge building on my recent experiments.
Iambe is intended to have the best realistically possible understanding of anatomy and of a scene's state for a 20b merge, while remaining personable and authentic in "voice".
### Update Methodology
Noromaid and the general "no-robots" vibe didn't come through like I'd hoped in v1. My hypothesis is that the "soul" MythoMax and Noromaid have is probably distributed widely over many low-value deltas, due to the "ephemeral" nature of such a thing.
My old base model was likely giving DARE conniption fits, so I replaced that with a truly vanilla 20b base model.
CleverGirl was updated to the DARE version, as Sir Hillary said, simply because it was there.
Without a large base of dare_ties models to compare to, I'm basically feeling my way through this intuitively, so here's to good results!
### Recipe
merge_method: dare_ties
- base_model: athirdpath/BigLlama-20b-v1.1
- model: Noromaid-20b-v0.1.1
weight: 0.38 / density: 0.60
- model: athirdpath/athirdpath/Eileithyia-20b
weight: 0.22 / density: 0.40
- model: athirdpath/CleverGirl-20b-Blended-v1.1-DARE
weight: 0.40 / density: 0.33
int8_mask: true
dtype: bfloat16
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_athirdpath__Iambe-20b-DARE-v2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.99|
|AI2 Reasoning Challenge (25-Shot)|62.80|
|HellaSwag (10-Shot) |84.53|
|MMLU (5-Shot) |60.45|
|TruthfulQA (0-shot) |53.85|
|Winogrande (5-shot) |77.03|
|GSM8k (5-shot) |33.28|
|