--- base_model: facebook/wav2vec2-xls-r-300m datasets: - common_voice_11_0 license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-Hindi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: hi split: test args: hi metrics: - type: wer value: 0.5158313579410768 name: Wer --- # wav2vec2-large-xls-r-300m-Hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7786 - Wer: 0.5158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.0146 | 0.7214 | 400 | 2.8409 | 0.9970 | | 1.2129 | 1.4427 | 800 | 1.1656 | 0.7795 | | 0.7592 | 2.1641 | 1200 | 1.0091 | 0.7199 | | 0.5798 | 2.8855 | 1600 | 0.9187 | 0.6614 | | 0.4609 | 3.6069 | 2000 | 0.8386 | 0.6084 | | 0.3828 | 4.3282 | 2400 | 0.8442 | 0.6097 | | 0.3242 | 5.0496 | 2800 | 0.7907 | 0.5744 | | 0.2619 | 5.7710 | 3200 | 0.7661 | 0.5485 | | 0.2132 | 6.4923 | 3600 | 0.7943 | 0.5388 | | 0.1911 | 7.2137 | 4000 | 0.7835 | 0.5278 | | 0.1637 | 7.9351 | 4400 | 0.7786 | 0.5158 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1