File size: 2,478 Bytes
d5fbb12
dd400d6
 
 
9c2a460
dd400d6
 
9c2a460
 
dd400d6
 
 
 
 
9c2a460
dd400d6
 
 
 
 
 
 
9c2a460
dd400d6
9c2a460
d5fbb12
 
dd400d6
 
d5fbb12
dd400d6
d5fbb12
dd400d6
 
 
 
d5fbb12
dd400d6
d5fbb12
dd400d6
d5fbb12
dd400d6
d5fbb12
dd400d6
d5fbb12
dd400d6
d5fbb12
dd400d6
d5fbb12
dd400d6
d5fbb12
dd400d6
d5fbb12
dd400d6
 
 
 
 
 
 
 
 
 
 
 
d5fbb12
dd400d6
d5fbb12
dd400d6
 
 
 
 
 
 
 
 
 
 
 
 
d5fbb12
 
dd400d6
d5fbb12
dd400d6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- common_voice_11_0
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-Hindi
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_11_0
      type: common_voice_11_0
      config: hi
      split: test
      args: hi
    metrics:
    - type: wer
      value: 0.5158313579410768
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-Hindi

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7786
- Wer: 0.5158

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 6.0146        | 0.7214 | 400  | 2.8409          | 0.9970 |
| 1.2129        | 1.4427 | 800  | 1.1656          | 0.7795 |
| 0.7592        | 2.1641 | 1200 | 1.0091          | 0.7199 |
| 0.5798        | 2.8855 | 1600 | 0.9187          | 0.6614 |
| 0.4609        | 3.6069 | 2000 | 0.8386          | 0.6084 |
| 0.3828        | 4.3282 | 2400 | 0.8442          | 0.6097 |
| 0.3242        | 5.0496 | 2800 | 0.7907          | 0.5744 |
| 0.2619        | 5.7710 | 3200 | 0.7661          | 0.5485 |
| 0.2132        | 6.4923 | 3600 | 0.7943          | 0.5388 |
| 0.1911        | 7.2137 | 4000 | 0.7835          | 0.5278 |
| 0.1637        | 7.9351 | 4400 | 0.7786          | 0.5158 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1