File size: 2,478 Bytes
d5fbb12 dd400d6 9c2a460 dd400d6 9c2a460 dd400d6 9c2a460 dd400d6 9c2a460 dd400d6 9c2a460 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 d5fbb12 dd400d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
base_model: facebook/wav2vec2-xls-r-300m
datasets:
- common_voice_11_0
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-Hindi
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: hi
split: test
args: hi
metrics:
- type: wer
value: 0.5158313579410768
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-Hindi
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7786
- Wer: 0.5158
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 6.0146 | 0.7214 | 400 | 2.8409 | 0.9970 |
| 1.2129 | 1.4427 | 800 | 1.1656 | 0.7795 |
| 0.7592 | 2.1641 | 1200 | 1.0091 | 0.7199 |
| 0.5798 | 2.8855 | 1600 | 0.9187 | 0.6614 |
| 0.4609 | 3.6069 | 2000 | 0.8386 | 0.6084 |
| 0.3828 | 4.3282 | 2400 | 0.8442 | 0.6097 |
| 0.3242 | 5.0496 | 2800 | 0.7907 | 0.5744 |
| 0.2619 | 5.7710 | 3200 | 0.7661 | 0.5485 |
| 0.2132 | 6.4923 | 3600 | 0.7943 | 0.5388 |
| 0.1911 | 7.2137 | 4000 | 0.7835 | 0.5278 |
| 0.1637 | 7.9351 | 4400 | 0.7786 | 0.5158 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|