--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-kaggle-be3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 45.60938682816049 --- # whisper-kaggle-be3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3213 - Wer: 45.6094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0749 | 3.15 | 1000 | 0.1886 | 50.9273 | | 0.0117 | 6.31 | 2000 | 0.2440 | 47.2937 | | 0.0014 | 9.46 | 3000 | 0.2978 | 45.8933 | | 0.0003 | 12.62 | 4000 | 0.3213 | 45.6094 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.0 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3