--- library_name: transformers language: - wo license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper-WOLOF-5-hours-Google-Fleurs-dataset results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: wo_sn split: None args: 'config: wo, split: test' metrics: - name: Wer type: wer value: 49.03357070193286 --- [Visualize in Weights & Biases](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/79l4ms4x) # Whisper-WOLOF-5-hours-Google-Fleurs-dataset This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.5579 - Wer: 49.0336 - Cer: 18.1546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:| | 0.7747 | 12.1951 | 500 | 1.3158 | 48.9318 | 18.0097 | | 0.0052 | 24.3902 | 1000 | 1.4793 | 48.9431 | 18.1792 | | 0.0012 | 36.5854 | 1500 | 1.5371 | 49.2144 | 18.0521 | | 0.0008 | 48.7805 | 2000 | 1.5579 | 49.0336 | 18.1546 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1