asigalov61
commited on
Upload Score_2_Performance_Transformer_Eval_Colab.ipynb
Browse files
code/Score_2_Performance_Transformer_Eval_Colab.ipynb
ADDED
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "VGrGd6__l5ch"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Score 2 Performance Transformer Eval Colab (ver. 1.0)\n",
|
10 |
+
"\n",
|
11 |
+
"***\n",
|
12 |
+
"\n",
|
13 |
+
"Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools\n",
|
14 |
+
"\n",
|
15 |
+
"***\n",
|
16 |
+
"\n",
|
17 |
+
"WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/\n",
|
18 |
+
"\n",
|
19 |
+
"***\n",
|
20 |
+
"\n",
|
21 |
+
"#### Project Los Angeles\n",
|
22 |
+
"\n",
|
23 |
+
"#### Tegridy Code 2024\n",
|
24 |
+
"\n",
|
25 |
+
"***"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"metadata": {
|
31 |
+
"id": "shLrgoXdl5cj"
|
32 |
+
},
|
33 |
+
"source": [
|
34 |
+
"# GPU check"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {
|
41 |
+
"id": "X3rABEpKCO02"
|
42 |
+
},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"!nvidia-smi"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "markdown",
|
50 |
+
"metadata": {
|
51 |
+
"id": "0RcVC4btl5ck"
|
52 |
+
},
|
53 |
+
"source": [
|
54 |
+
"# Setup environment"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"metadata": {
|
61 |
+
"id": "viHgEaNACPTs"
|
62 |
+
},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"!git clone --depth 1 https://github.com/asigalov61/tegridy-tools"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": null,
|
71 |
+
"metadata": {
|
72 |
+
"id": "vK40g6V_BTNj"
|
73 |
+
},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"!sudo pip install torch\n",
|
77 |
+
"!sudo pip install einops\n",
|
78 |
+
"!sudo pip install torch-summary\n",
|
79 |
+
"!sudo pip install tqdm\n",
|
80 |
+
"!sudo pip install huggingface_hub\n",
|
81 |
+
"!sudo pip install hf-transfer\n",
|
82 |
+
"!sudo pip install ipywidgets"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "markdown",
|
87 |
+
"metadata": {},
|
88 |
+
"source": [
|
89 |
+
"# Import modules"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {
|
96 |
+
"id": "DzCOZU_gBiQV"
|
97 |
+
},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"# Load modules and make data dir\n",
|
101 |
+
"\n",
|
102 |
+
"print('Loading modules...')\n",
|
103 |
+
"\n",
|
104 |
+
"import os\n",
|
105 |
+
"import pickle\n",
|
106 |
+
"import random\n",
|
107 |
+
"import secrets\n",
|
108 |
+
"import tqdm\n",
|
109 |
+
"import math\n",
|
110 |
+
"\n",
|
111 |
+
"!set USE_FLASH_ATTENTION=1\n",
|
112 |
+
"os.environ['USE_FLASH_ATTENTION'] = '1'\n",
|
113 |
+
"os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'\n",
|
114 |
+
"\n",
|
115 |
+
"import torch\n",
|
116 |
+
"\n",
|
117 |
+
"import matplotlib.pyplot as plt\n",
|
118 |
+
"\n",
|
119 |
+
"from torchsummary import summary\n",
|
120 |
+
"\n",
|
121 |
+
"%cd /home/ubuntu/tegridy-tools/tegridy-tools/\n",
|
122 |
+
"\n",
|
123 |
+
"import TMIDIX\n",
|
124 |
+
"\n",
|
125 |
+
"%cd /home/ubuntu/tegridy-tools/tegridy-tools/X-Transformer\n",
|
126 |
+
"\n",
|
127 |
+
"from x_transformer_1_23_2 import *\n",
|
128 |
+
"\n",
|
129 |
+
"torch.set_float32_matmul_precision('high')\n",
|
130 |
+
"torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul\n",
|
131 |
+
"torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn\n",
|
132 |
+
"torch.backends.cuda.enable_flash_sdp(True)\n",
|
133 |
+
"torch.backends.cuda.enable_cudnn_sdp(False)\n",
|
134 |
+
"\n",
|
135 |
+
"!set USE_FLASH_ATTENTION=1\n",
|
136 |
+
"\n",
|
137 |
+
"%cd /home/ubuntu/\n",
|
138 |
+
"\n",
|
139 |
+
"if not os.path.exists('/home/ubuntu/INTS'):\n",
|
140 |
+
" os.makedirs('/home/ubuntu/INTS')\n",
|
141 |
+
"\n",
|
142 |
+
"import random\n",
|
143 |
+
"\n",
|
144 |
+
"from huggingface_hub import hf_hub_download\n",
|
145 |
+
"\n",
|
146 |
+
"print('Done')\n",
|
147 |
+
"\n",
|
148 |
+
"print('Torch version:', torch.__version__)"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "markdown",
|
153 |
+
"metadata": {},
|
154 |
+
"source": [
|
155 |
+
"# Download model"
|
156 |
+
]
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"cell_type": "code",
|
160 |
+
"execution_count": null,
|
161 |
+
"metadata": {
|
162 |
+
"id": "SA8qQSzbWslM"
|
163 |
+
},
|
164 |
+
"outputs": [],
|
165 |
+
"source": [
|
166 |
+
"hf_hub_download(repo_id='asigalov61/Score-2-Performance-Transformer',\n",
|
167 |
+
" filename='Score_2_Performance_Transformer_Small_Trained_Model_5280_steps_1.5374_loss_0.5525_acc.pth',\n",
|
168 |
+
" local_dir='/home/ubuntu/Model/',\n",
|
169 |
+
" )"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "markdown",
|
174 |
+
"metadata": {},
|
175 |
+
"source": [
|
176 |
+
"# Load model"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": null,
|
182 |
+
"metadata": {
|
183 |
+
"id": "gSvqSRLaWslM"
|
184 |
+
},
|
185 |
+
"outputs": [],
|
186 |
+
"source": [
|
187 |
+
"SEQ_LEN = 1802\n",
|
188 |
+
"PAD_IDX = 771\n",
|
189 |
+
"\n",
|
190 |
+
"model = TransformerWrapper(\n",
|
191 |
+
" num_tokens = PAD_IDX+1,\n",
|
192 |
+
" max_seq_len = SEQ_LEN,\n",
|
193 |
+
" attn_layers = Decoder(dim = 1024,\n",
|
194 |
+
" depth = 8,\n",
|
195 |
+
" heads = 8,\n",
|
196 |
+
" rotary_pos_emb = True,\n",
|
197 |
+
" attn_flash = True\n",
|
198 |
+
" )\n",
|
199 |
+
" )\n",
|
200 |
+
"\n",
|
201 |
+
"model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)\n",
|
202 |
+
"\n",
|
203 |
+
"print('=' * 70)\n",
|
204 |
+
"print('Loading model checkpoint...')\n",
|
205 |
+
"\n",
|
206 |
+
"model_path = '/home/ubuntu/Model/Score_2_Performance_Transformer_Small_Trained_Model_5280_steps_1.5374_loss_0.5525_acc.pth'\n",
|
207 |
+
"\n",
|
208 |
+
"model.load_state_dict(torch.load(model_path, weights_only=True))\n",
|
209 |
+
"\n",
|
210 |
+
"print('=' * 70)\n",
|
211 |
+
"\n",
|
212 |
+
"model = torch.compile(model, mode='max-autotune')\n",
|
213 |
+
"\n",
|
214 |
+
"model.cuda()\n",
|
215 |
+
"model.eval()\n",
|
216 |
+
"\n",
|
217 |
+
"print('Done!')\n",
|
218 |
+
"\n",
|
219 |
+
"summary(model)\n",
|
220 |
+
"\n",
|
221 |
+
"dtype = torch.bfloat16\n",
|
222 |
+
"\n",
|
223 |
+
"ctx = torch.amp.autocast(device_type='cuda', dtype=dtype)"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "markdown",
|
228 |
+
"metadata": {
|
229 |
+
"id": "feXay_Ed7mG5"
|
230 |
+
},
|
231 |
+
"source": [
|
232 |
+
"# Eval"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "markdown",
|
237 |
+
"metadata": {},
|
238 |
+
"source": [
|
239 |
+
"## Load source MIDI composition"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "code",
|
244 |
+
"execution_count": null,
|
245 |
+
"metadata": {
|
246 |
+
"id": "enHpaHxaWslM"
|
247 |
+
},
|
248 |
+
"outputs": [],
|
249 |
+
"source": [
|
250 |
+
"#=================================================================\n",
|
251 |
+
"\n",
|
252 |
+
"# This can be a score or performance\n",
|
253 |
+
"# MIDI will be converted to solo Piano without drums\n",
|
254 |
+
"\n",
|
255 |
+
"# PLEASE NOTE THAT the MIDI composition MUST HAVE at least 300 notes for this demo to work properly!\n",
|
256 |
+
"\n",
|
257 |
+
"#=================================================================\n",
|
258 |
+
"\n",
|
259 |
+
"midi_file = '/home/ubuntu/tegridy-tools/tegridy-tools/seed2.mid'\n",
|
260 |
+
"# midi_file = 'midi_score.mid'\n",
|
261 |
+
"\n",
|
262 |
+
"#=================================================================\n",
|
263 |
+
"\n",
|
264 |
+
"raw_score = TMIDIX.midi2single_track_ms_score(midi_file)\n",
|
265 |
+
"\n",
|
266 |
+
"escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)\n",
|
267 |
+
"\n",
|
268 |
+
"if escore_notes[0]:\n",
|
269 |
+
"\n",
|
270 |
+
" escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)\n",
|
271 |
+
"\n",
|
272 |
+
" pe = escore_notes[0]\n",
|
273 |
+
"\n",
|
274 |
+
" melody_chords = []\n",
|
275 |
+
"\n",
|
276 |
+
" seen = []\n",
|
277 |
+
"\n",
|
278 |
+
" for e in escore_notes:\n",
|
279 |
+
"\n",
|
280 |
+
" if e[3] != 9:\n",
|
281 |
+
" \n",
|
282 |
+
" #=======================================================\n",
|
283 |
+
" \n",
|
284 |
+
" dtime = max(0, min(255, e[1]-pe[1]))\n",
|
285 |
+
" \n",
|
286 |
+
" if dtime != 0:\n",
|
287 |
+
" seen = []\n",
|
288 |
+
" \n",
|
289 |
+
" # Durations\n",
|
290 |
+
" dur = max(1, min(255, e[2]))\n",
|
291 |
+
" \n",
|
292 |
+
" # Pitches\n",
|
293 |
+
" ptc = max(1, min(127, e[4]))\n",
|
294 |
+
" \n",
|
295 |
+
" vel = max(1, min(127, e[5]))\n",
|
296 |
+
" \n",
|
297 |
+
" if ptc not in seen:\n",
|
298 |
+
" \n",
|
299 |
+
" melody_chords.append([dtime, dur, ptc, vel])\n",
|
300 |
+
" \n",
|
301 |
+
" seen.append(ptc)\n",
|
302 |
+
" \n",
|
303 |
+
" pe = e\n",
|
304 |
+
"\n",
|
305 |
+
"print('=' * 70)\n",
|
306 |
+
"print('Number of notes in a composition:', len(melody_chords))\n",
|
307 |
+
"print('=' * 70)\n",
|
308 |
+
"\n",
|
309 |
+
"src_melody_chords_f = []\n",
|
310 |
+
"melody_chords_f = []\n",
|
311 |
+
"\n",
|
312 |
+
"for i in range(0, len(melody_chords), 300):\n",
|
313 |
+
" \n",
|
314 |
+
" chunk = melody_chords[i:i+300]\n",
|
315 |
+
" \n",
|
316 |
+
" src = []\n",
|
317 |
+
" src1 = []\n",
|
318 |
+
" trg = []\n",
|
319 |
+
" \n",
|
320 |
+
" if len(chunk) == 300:\n",
|
321 |
+
"\n",
|
322 |
+
" for mm in chunk:\n",
|
323 |
+
" src.extend([mm[0], mm[2]+256])\n",
|
324 |
+
" src1.append([mm[0], mm[2]+256, mm[1]+384, mm[3]+640])\n",
|
325 |
+
" trg.extend([mm[0], mm[2]+256, mm[1]+384, mm[3]+640])\n",
|
326 |
+
"\n",
|
327 |
+
" src_melody_chords_f.append(src1)\n",
|
328 |
+
" melody_chords_f.append([768] + src + [769] + trg + [770])\n",
|
329 |
+
" \n",
|
330 |
+
"print('Done!')\n",
|
331 |
+
"print('=' * 70)\n",
|
332 |
+
"print('Number of composition chunks:', len(melody_chords_f))\n",
|
333 |
+
"print('=' * 70)"
|
334 |
+
]
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"cell_type": "markdown",
|
338 |
+
"metadata": {},
|
339 |
+
"source": [
|
340 |
+
"# Generate new durations and velocities"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": null,
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [],
|
348 |
+
"source": [
|
349 |
+
"model.eval()\n",
|
350 |
+
"\n",
|
351 |
+
"#================================================================\n",
|
352 |
+
"\n",
|
353 |
+
"composition_chunk_idx = 0 # Composition chunk idx to generate durations and velocities for. Each chunk is 300 notes\n",
|
354 |
+
"\n",
|
355 |
+
"num_prime_notes = 4 # Priming improves the results but it is not necessary and you can set it to zero\n",
|
356 |
+
"dur_top_k = 2 # Use k == 1 if src composition is score and k > 1 if src composition is performance\n",
|
357 |
+
"\n",
|
358 |
+
"dur_temperature = 1.3 # For best results, durations temperature should be more than 1.0 but less than velocities temperature\n",
|
359 |
+
"vel_temperature = 1.5 # For best results, velocities temperature must be larger than 1.3 and larger than durations temperature\n",
|
360 |
+
"\n",
|
361 |
+
"#================================================================\n",
|
362 |
+
"\n",
|
363 |
+
"song_chunk = src_melody_chords_f[composition_chunk_idx]\n",
|
364 |
+
"\n",
|
365 |
+
"song = [768]\n",
|
366 |
+
"\n",
|
367 |
+
"for m in song_chunk:\n",
|
368 |
+
" song.extend(m[:2])\n",
|
369 |
+
"\n",
|
370 |
+
"song.append(769)\n",
|
371 |
+
"\n",
|
372 |
+
"for i in tqdm.tqdm(range(len(song_chunk))):\n",
|
373 |
+
"\n",
|
374 |
+
" song.extend(song_chunk[i][:2])\n",
|
375 |
+
"\n",
|
376 |
+
" # Durations\n",
|
377 |
+
"\n",
|
378 |
+
" if i < num_prime_notes:\n",
|
379 |
+
" song.append(song_chunk[i][2])\n",
|
380 |
+
"\n",
|
381 |
+
" else:\n",
|
382 |
+
"\n",
|
383 |
+
" x = torch.LongTensor(song).cuda()\n",
|
384 |
+
"\n",
|
385 |
+
" y = 0 \n",
|
386 |
+
"\n",
|
387 |
+
" while not 384 < y < 640:\n",
|
388 |
+
" \n",
|
389 |
+
" with ctx:\n",
|
390 |
+
" out = model.generate(x,\n",
|
391 |
+
" 1,\n",
|
392 |
+
" temperature=dur_temperature,\n",
|
393 |
+
" filter_logits_fn=top_k,\n",
|
394 |
+
" filter_kwargs={'k': dur_top_k},\n",
|
395 |
+
" return_prime=False,\n",
|
396 |
+
" verbose=False)\n",
|
397 |
+
" \n",
|
398 |
+
" y = out.tolist()[0][0]\n",
|
399 |
+
" \n",
|
400 |
+
" song.append(y)\n",
|
401 |
+
"\n",
|
402 |
+
"\n",
|
403 |
+
" # Velocities\n",
|
404 |
+
" \n",
|
405 |
+
" if i < num_prime_notes:\n",
|
406 |
+
" song.append(song_chunk[i][3])\n",
|
407 |
+
"\n",
|
408 |
+
" else:\n",
|
409 |
+
"\n",
|
410 |
+
" x = torch.LongTensor(song).cuda()\n",
|
411 |
+
" \n",
|
412 |
+
" y = 0 \n",
|
413 |
+
"\n",
|
414 |
+
" while not 640 < y < 768:\n",
|
415 |
+
" \n",
|
416 |
+
" with ctx:\n",
|
417 |
+
" out = model.generate(x,\n",
|
418 |
+
" 1,\n",
|
419 |
+
" temperature=vel_temperature,\n",
|
420 |
+
" #filter_logits_fn=top_k,\n",
|
421 |
+
" #filter_kwargs={'k': 10},\n",
|
422 |
+
" return_prime=False,\n",
|
423 |
+
" verbose=False)\n",
|
424 |
+
" \n",
|
425 |
+
" y = out.tolist()[0][0]\n",
|
426 |
+
" \n",
|
427 |
+
" song.append(y)\n",
|
428 |
+
"\n",
|
429 |
+
"\n",
|
430 |
+
"print('---------------')\n",
|
431 |
+
"\n",
|
432 |
+
"#===========================================================================\n",
|
433 |
+
"# Convert model output to MIDI\n",
|
434 |
+
"#===========================================================================\n",
|
435 |
+
"\n",
|
436 |
+
"song1 = song[602:]\n",
|
437 |
+
"\n",
|
438 |
+
"print('Sample INTs', song1[:15])\n",
|
439 |
+
"\n",
|
440 |
+
"song_f = []\n",
|
441 |
+
"\n",
|
442 |
+
"time = 0\n",
|
443 |
+
"dur = 0\n",
|
444 |
+
"vel = 90\n",
|
445 |
+
"pitch = 60\n",
|
446 |
+
"channel = 0\n",
|
447 |
+
"patch = 0\n",
|
448 |
+
"\n",
|
449 |
+
"patches = [0] * 16\n",
|
450 |
+
"\n",
|
451 |
+
"for ss in song1:\n",
|
452 |
+
"\n",
|
453 |
+
" if 0 <= ss < 256:\n",
|
454 |
+
"\n",
|
455 |
+
" time += ss * 16\n",
|
456 |
+
"\n",
|
457 |
+
" if 256 <= ss < 384:\n",
|
458 |
+
"\n",
|
459 |
+
" pitch = ss-256\n",
|
460 |
+
"\n",
|
461 |
+
" if 384 <= ss < 640:\n",
|
462 |
+
"\n",
|
463 |
+
" dur = (ss-384) * 16\n",
|
464 |
+
"\n",
|
465 |
+
" if 640 <= ss < 768:\n",
|
466 |
+
" \n",
|
467 |
+
" vel = (ss-640)\n",
|
468 |
+
" \n",
|
469 |
+
" song_f.append(['note', time, dur, channel, pitch, vel, patch])\n",
|
470 |
+
"\n",
|
471 |
+
"detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
|
472 |
+
" output_signature = 'Score 2 Performance Transformer', \n",
|
473 |
+
" output_file_name = '/home/ubuntu/Score-2-Performance-Transformer-Music-Composition', \n",
|
474 |
+
" track_name='Project Los Angeles',\n",
|
475 |
+
" list_of_MIDI_patches=patches\n",
|
476 |
+
" )\n",
|
477 |
+
"\n",
|
478 |
+
"print('Done!')"
|
479 |
+
]
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"cell_type": "markdown",
|
483 |
+
"metadata": {
|
484 |
+
"id": "z87TlDTVl5cp"
|
485 |
+
},
|
486 |
+
"source": [
|
487 |
+
"# Congrats! You did it! :)"
|
488 |
+
]
|
489 |
+
}
|
490 |
+
],
|
491 |
+
"metadata": {
|
492 |
+
"accelerator": "GPU",
|
493 |
+
"colab": {
|
494 |
+
"gpuClass": "premium",
|
495 |
+
"gpuType": "T4",
|
496 |
+
"private_outputs": true,
|
497 |
+
"provenance": []
|
498 |
+
},
|
499 |
+
"kernelspec": {
|
500 |
+
"display_name": "Python 3 (ipykernel)",
|
501 |
+
"language": "python",
|
502 |
+
"name": "python3"
|
503 |
+
},
|
504 |
+
"language_info": {
|
505 |
+
"codemirror_mode": {
|
506 |
+
"name": "ipython",
|
507 |
+
"version": 3
|
508 |
+
},
|
509 |
+
"file_extension": ".py",
|
510 |
+
"mimetype": "text/x-python",
|
511 |
+
"name": "python",
|
512 |
+
"nbconvert_exporter": "python",
|
513 |
+
"pygments_lexer": "ipython3",
|
514 |
+
"version": "3.10.12"
|
515 |
+
}
|
516 |
+
},
|
517 |
+
"nbformat": 4,
|
518 |
+
"nbformat_minor": 4
|
519 |
+
}
|