arpagon commited on
Commit
ede575d
·
1 Parent(s): b901554

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice_11_0
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: openai/whisper-large-v2
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: common_voice_11_0
17
+ type: common_voice_11_0
18
+ config: es
19
+ split: test
20
+ args: es
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 5.288186684683748
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # openai/whisper-large-v2
31
+
32
+ This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1702
35
+ - Wer: 5.2882
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 4
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 16
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 500
63
+ - training_steps: 10000
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
70
+ | 0.1738 | 0.1 | 1000 | 0.2031 | 7.0384 |
71
+ | 0.2108 | 1.01 | 2000 | 0.1885 | 6.6668 |
72
+ | 0.1599 | 1.11 | 3000 | 0.1814 | 6.5342 |
73
+ | 0.0794 | 2.01 | 4000 | 0.1792 | 6.0314 |
74
+ | 0.0477 | 2.11 | 5000 | 0.1936 | 6.1795 |
75
+ | 0.0341 | 3.02 | 6000 | 0.2038 | 6.0113 |
76
+ | 0.0264 | 3.12 | 7000 | 0.2111 | 5.8410 |
77
+ | 0.0608 | 4.02 | 8000 | 0.1824 | 5.9067 |
78
+ | 0.0523 | 4.12 | 9000 | 0.1768 | 5.3941 |
79
+ | 0.0984 | 5.03 | 10000 | 0.1702 | 5.2882 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.26.0.dev0
85
+ - Pytorch 2.0.0.dev20221210+cu117
86
+ - Datasets 2.7.1.dev0
87
+ - Tokenizers 0.13.2