kikoarizeai commited on
Commit
a966167
·
1 Parent(s): dbf01bb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cifar10_quality_drift
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: resnet-50-cifar10-quality-drift
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: cifar10_quality_drift
18
+ type: cifar10_quality_drift
19
+ args: default
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.724
24
+ - name: F1
25
+ type: f1
26
+ value: 0.7221970011456912
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # resnet-50-cifar10-quality-drift
33
+
34
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cifar10_quality_drift dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.8235
37
+ - Accuracy: 0.724
38
+ - F1: 0.7222
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.0002
58
+ - train_batch_size: 8
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 3
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
70
+ | 1.7311 | 1.0 | 750 | 1.1310 | 0.6333 | 0.6300 |
71
+ | 1.1728 | 2.0 | 1500 | 0.8495 | 0.7153 | 0.7155 |
72
+ | 1.0322 | 3.0 | 2250 | 0.8235 | 0.724 | 0.7222 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.20.1
78
+ - Pytorch 1.12.0+cu113
79
+ - Datasets 2.3.2
80
+ - Tokenizers 0.12.1