aotrih commited on
Commit
ebe076a
·
1 Parent(s): 596b32b

Add TextDecoderContextPrefil

Browse files
openai_whisper-large-v3_turbo_1049MB/TextDecoderContextPrefill.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a25601f7f75bf3df5d409d7c868951386b9b9baf79c5af0983b9b219a5978d8
3
+ size 243
openai_whisper-large-v3_turbo_1049MB/TextDecoderContextPrefill.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ea5572d29320308c42c5a2a6f35ade13d9aaf8cae5732b70e5c3c7a7e01d65a
3
+ size 382
openai_whisper-large-v3_turbo_1049MB/TextDecoderContextPrefill.mlmodelc/metadata.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 3)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 40960, 1, 3]",
13
+ "name" : "key_cache_prefill",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 3)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 40960, 1, 3]",
23
+ "name" : "value_cache_prefill",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "modelParameters" : [
28
+
29
+ ],
30
+ "specificationVersion" : 8,
31
+ "mlProgramOperationTypeHistogram" : {
32
+ "Ios17.mul" : 1,
33
+ "Ios17.cast" : 1,
34
+ "Ios17.sub" : 1,
35
+ "Ios17.reshape" : 2,
36
+ "Ios17.add" : 1,
37
+ "Ios17.gather" : 2
38
+ },
39
+ "computePrecision" : "Mixed (Float16, Int16, Int32)",
40
+ "isUpdatable" : "0",
41
+ "availability" : {
42
+ "macOS" : "14.0",
43
+ "tvOS" : "17.0",
44
+ "visionOS" : "1.0",
45
+ "watchOS" : "10.0",
46
+ "iOS" : "17.0",
47
+ "macCatalyst" : "17.0"
48
+ },
49
+ "modelType" : {
50
+ "name" : "MLModelType_mlProgram"
51
+ },
52
+ "userDefinedMetadata" : {
53
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
54
+ "com.github.apple.coremltools.source" : "torch==2.1.2",
55
+ "com.github.apple.coremltools.version" : "7.1"
56
+ },
57
+ "inputSchema" : [
58
+ {
59
+ "hasShapeFlexibility" : "0",
60
+ "isOptional" : "0",
61
+ "dataType" : "Int32",
62
+ "formattedType" : "MultiArray (Int32 1)",
63
+ "shortDescription" : "",
64
+ "shape" : "[1]",
65
+ "name" : "task",
66
+ "type" : "MultiArray"
67
+ },
68
+ {
69
+ "hasShapeFlexibility" : "0",
70
+ "isOptional" : "0",
71
+ "dataType" : "Int32",
72
+ "formattedType" : "MultiArray (Int32 1)",
73
+ "shortDescription" : "",
74
+ "shape" : "[1]",
75
+ "name" : "language",
76
+ "type" : "MultiArray"
77
+ }
78
+ ],
79
+ "generatedClassName" : "TextDecoderContextPrefill",
80
+ "method" : "predict"
81
+ }
82
+ ]
openai_whisper-large-v3_turbo_1049MB/TextDecoderContextPrefill.mlmodelc/model.mil ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.1.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
3
+ {
4
+ func main<ios17>(tensor<int32, [1]> language, tensor<int32, [1]> task) {
5
+ tensor<int32, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<int32, []>(50259)];
6
+ tensor<int32, [1]> var_7 = sub(x = language, y = var_6)[name = tensor<string, []>("op_7")];
7
+ tensor<int32, []> var_8 = const()[name = tensor<string, []>("op_8"), val = tensor<int32, []>(2)];
8
+ tensor<int32, [1]> var_9 = mul(x = var_7, y = var_8)[name = tensor<string, []>("op_9")];
9
+ tensor<int32, [1]> input = add(x = var_9, y = task)[name = tensor<string, []>("input")];
10
+ tensor<int32, []> var_15_axis_0 = const()[name = tensor<string, []>("op_15_axis_0"), val = tensor<int32, []>(0)];
11
+ tensor<int32, []> var_15_batch_dims_0 = const()[name = tensor<string, []>("op_15_batch_dims_0"), val = tensor<int32, []>(0)];
12
+ tensor<bool, []> var_15_validate_indices_0 = const()[name = tensor<string, []>("op_15_validate_indices_0"), val = tensor<bool, []>(false)];
13
+ tensor<fp16, [200, 122880]> key_cache_lut_weight_to_fp16 = const()[name = tensor<string, []>("key_cache_lut_weight_to_fp16"), val = tensor<fp16, [200, 122880]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
14
+ tensor<string, []> input_to_int16_dtype_0 = const()[name = tensor<string, []>("input_to_int16_dtype_0"), val = tensor<string, []>("int16")];
15
+ tensor<int16, [1]> cast_6 = cast(dtype = input_to_int16_dtype_0, x = input)[name = tensor<string, []>("cast_6")];
16
+ tensor<fp16, [1, 122880]> var_15_cast_fp16_cast_int16 = gather(axis = var_15_axis_0, batch_dims = var_15_batch_dims_0, indices = cast_6, validate_indices = var_15_validate_indices_0, x = key_cache_lut_weight_to_fp16)[name = tensor<string, []>("op_15_cast_fp16_cast_int16")];
17
+ tensor<int32, [4]> var_20 = const()[name = tensor<string, []>("op_20"), val = tensor<int32, [4]>([1, 40960, 1, 3])];
18
+ tensor<fp16, [1, 40960, 1, 3]> key_cache_prefill = reshape(shape = var_20, x = var_15_cast_fp16_cast_int16)[name = tensor<string, []>("op_21_cast_fp16")];
19
+ tensor<int32, []> var_25_axis_0 = const()[name = tensor<string, []>("op_25_axis_0"), val = tensor<int32, []>(0)];
20
+ tensor<int32, []> var_25_batch_dims_0 = const()[name = tensor<string, []>("op_25_batch_dims_0"), val = tensor<int32, []>(0)];
21
+ tensor<bool, []> var_25_validate_indices_0 = const()[name = tensor<string, []>("op_25_validate_indices_0"), val = tensor<bool, []>(false)];
22
+ tensor<fp16, [200, 122880]> value_cache_lut_weight_to_fp16 = const()[name = tensor<string, []>("value_cache_lut_weight_to_fp16"), val = tensor<fp16, [200, 122880]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49152128)))];
23
+ tensor<fp16, [1, 122880]> var_25_cast_fp16_cast_int16 = gather(axis = var_25_axis_0, batch_dims = var_25_batch_dims_0, indices = cast_6, validate_indices = var_25_validate_indices_0, x = value_cache_lut_weight_to_fp16)[name = tensor<string, []>("op_25_cast_fp16_cast_int16")];
24
+ tensor<int32, [4]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [4]>([1, 40960, 1, 3])];
25
+ tensor<fp16, [1, 40960, 1, 3]> value_cache_prefill = reshape(shape = var_30, x = var_25_cast_fp16_cast_int16)[name = tensor<string, []>("op_31_cast_fp16")];
26
+ } -> (key_cache_prefill, value_cache_prefill);
27
+ }
openai_whisper-large-v3_turbo_1049MB/TextDecoderContextPrefill.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd4457ee28e369c2f1d7858370352085554a1fb6def48db64f4f4ab27c7015bc
3
+ size 98304192
openai_whisper-large-v3_turbo_1307MB/TextDecoderContextPrefill.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a25601f7f75bf3df5d409d7c868951386b9b9baf79c5af0983b9b219a5978d8
3
+ size 243
openai_whisper-large-v3_turbo_1307MB/TextDecoderContextPrefill.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ea5572d29320308c42c5a2a6f35ade13d9aaf8cae5732b70e5c3c7a7e01d65a
3
+ size 382
openai_whisper-large-v3_turbo_1307MB/TextDecoderContextPrefill.mlmodelc/metadata.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 3)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 40960, 1, 3]",
13
+ "name" : "key_cache_prefill",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 3)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 40960, 1, 3]",
23
+ "name" : "value_cache_prefill",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "modelParameters" : [
28
+
29
+ ],
30
+ "specificationVersion" : 8,
31
+ "mlProgramOperationTypeHistogram" : {
32
+ "Ios17.mul" : 1,
33
+ "Ios17.cast" : 1,
34
+ "Ios17.sub" : 1,
35
+ "Ios17.reshape" : 2,
36
+ "Ios17.add" : 1,
37
+ "Ios17.gather" : 2
38
+ },
39
+ "computePrecision" : "Mixed (Float16, Int16, Int32)",
40
+ "isUpdatable" : "0",
41
+ "availability" : {
42
+ "macOS" : "14.0",
43
+ "tvOS" : "17.0",
44
+ "visionOS" : "1.0",
45
+ "watchOS" : "10.0",
46
+ "iOS" : "17.0",
47
+ "macCatalyst" : "17.0"
48
+ },
49
+ "modelType" : {
50
+ "name" : "MLModelType_mlProgram"
51
+ },
52
+ "userDefinedMetadata" : {
53
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
54
+ "com.github.apple.coremltools.source" : "torch==2.1.2",
55
+ "com.github.apple.coremltools.version" : "7.1"
56
+ },
57
+ "inputSchema" : [
58
+ {
59
+ "hasShapeFlexibility" : "0",
60
+ "isOptional" : "0",
61
+ "dataType" : "Int32",
62
+ "formattedType" : "MultiArray (Int32 1)",
63
+ "shortDescription" : "",
64
+ "shape" : "[1]",
65
+ "name" : "task",
66
+ "type" : "MultiArray"
67
+ },
68
+ {
69
+ "hasShapeFlexibility" : "0",
70
+ "isOptional" : "0",
71
+ "dataType" : "Int32",
72
+ "formattedType" : "MultiArray (Int32 1)",
73
+ "shortDescription" : "",
74
+ "shape" : "[1]",
75
+ "name" : "language",
76
+ "type" : "MultiArray"
77
+ }
78
+ ],
79
+ "generatedClassName" : "TextDecoderContextPrefill",
80
+ "method" : "predict"
81
+ }
82
+ ]
openai_whisper-large-v3_turbo_1307MB/TextDecoderContextPrefill.mlmodelc/model.mil ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.1.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
3
+ {
4
+ func main<ios17>(tensor<int32, [1]> language, tensor<int32, [1]> task) {
5
+ tensor<int32, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<int32, []>(50259)];
6
+ tensor<int32, [1]> var_7 = sub(x = language, y = var_6)[name = tensor<string, []>("op_7")];
7
+ tensor<int32, []> var_8 = const()[name = tensor<string, []>("op_8"), val = tensor<int32, []>(2)];
8
+ tensor<int32, [1]> var_9 = mul(x = var_7, y = var_8)[name = tensor<string, []>("op_9")];
9
+ tensor<int32, [1]> input = add(x = var_9, y = task)[name = tensor<string, []>("input")];
10
+ tensor<int32, []> var_15_axis_0 = const()[name = tensor<string, []>("op_15_axis_0"), val = tensor<int32, []>(0)];
11
+ tensor<int32, []> var_15_batch_dims_0 = const()[name = tensor<string, []>("op_15_batch_dims_0"), val = tensor<int32, []>(0)];
12
+ tensor<bool, []> var_15_validate_indices_0 = const()[name = tensor<string, []>("op_15_validate_indices_0"), val = tensor<bool, []>(false)];
13
+ tensor<fp16, [200, 122880]> key_cache_lut_weight_to_fp16 = const()[name = tensor<string, []>("key_cache_lut_weight_to_fp16"), val = tensor<fp16, [200, 122880]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
14
+ tensor<string, []> input_to_int16_dtype_0 = const()[name = tensor<string, []>("input_to_int16_dtype_0"), val = tensor<string, []>("int16")];
15
+ tensor<int16, [1]> cast_6 = cast(dtype = input_to_int16_dtype_0, x = input)[name = tensor<string, []>("cast_6")];
16
+ tensor<fp16, [1, 122880]> var_15_cast_fp16_cast_int16 = gather(axis = var_15_axis_0, batch_dims = var_15_batch_dims_0, indices = cast_6, validate_indices = var_15_validate_indices_0, x = key_cache_lut_weight_to_fp16)[name = tensor<string, []>("op_15_cast_fp16_cast_int16")];
17
+ tensor<int32, [4]> var_20 = const()[name = tensor<string, []>("op_20"), val = tensor<int32, [4]>([1, 40960, 1, 3])];
18
+ tensor<fp16, [1, 40960, 1, 3]> key_cache_prefill = reshape(shape = var_20, x = var_15_cast_fp16_cast_int16)[name = tensor<string, []>("op_21_cast_fp16")];
19
+ tensor<int32, []> var_25_axis_0 = const()[name = tensor<string, []>("op_25_axis_0"), val = tensor<int32, []>(0)];
20
+ tensor<int32, []> var_25_batch_dims_0 = const()[name = tensor<string, []>("op_25_batch_dims_0"), val = tensor<int32, []>(0)];
21
+ tensor<bool, []> var_25_validate_indices_0 = const()[name = tensor<string, []>("op_25_validate_indices_0"), val = tensor<bool, []>(false)];
22
+ tensor<fp16, [200, 122880]> value_cache_lut_weight_to_fp16 = const()[name = tensor<string, []>("value_cache_lut_weight_to_fp16"), val = tensor<fp16, [200, 122880]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49152128)))];
23
+ tensor<fp16, [1, 122880]> var_25_cast_fp16_cast_int16 = gather(axis = var_25_axis_0, batch_dims = var_25_batch_dims_0, indices = cast_6, validate_indices = var_25_validate_indices_0, x = value_cache_lut_weight_to_fp16)[name = tensor<string, []>("op_25_cast_fp16_cast_int16")];
24
+ tensor<int32, [4]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [4]>([1, 40960, 1, 3])];
25
+ tensor<fp16, [1, 40960, 1, 3]> value_cache_prefill = reshape(shape = var_30, x = var_25_cast_fp16_cast_int16)[name = tensor<string, []>("op_31_cast_fp16")];
26
+ } -> (key_cache_prefill, value_cache_prefill);
27
+ }
openai_whisper-large-v3_turbo_1307MB/TextDecoderContextPrefill.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd4457ee28e369c2f1d7858370352085554a1fb6def48db64f4f4ab27c7015bc
3
+ size 98304192