File size: 4,288 Bytes
8906f98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
library_name: peft
license: llama3
base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 6a8eb152-53fe-4f59-a510-7ea93c279661
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f4a376b71a175fc9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f4a376b71a175fc9_train_data.json
  type:
    field_instruction: title
    field_output: description
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/6a8eb152-53fe-4f59-a510-7ea93c279661
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 72GB
max_steps: 100
micro_batch_size: 4
mlflow_experiment_name: /tmp/f4a376b71a175fc9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 6a8eb152-53fe-4f59-a510-7ea93c279661
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 6a8eb152-53fe-4f59-a510-7ea93c279661
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

```

</details><br>

# 6a8eb152-53fe-4f59-a510-7ea93c279661

This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0001 | 1    | 16.8625         |
| 3.3711        | 0.0009 | 9    | 0.0608          |
| 0.0002        | 0.0018 | 18   | 0.0067          |
| 1.7641        | 0.0027 | 27   | 0.0008          |
| 0.0001        | 0.0036 | 36   | 0.0035          |
| 0.0001        | 0.0046 | 45   | 0.0028          |
| 0.0           | 0.0055 | 54   | 0.0009          |
| 0.0           | 0.0064 | 63   | 0.0006          |
| 0.0           | 0.0073 | 72   | 0.0005          |
| 0.0           | 0.0082 | 81   | 0.0000          |
| 0.0           | 0.0091 | 90   | 0.0000          |
| 0.0           | 0.0100 | 99   | 0.0000          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1