--- license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - arbml/mgb2 metrics: - wer base_model: openai/whisper-medium model-index: - name: Whisper Medium ar - Zaid Alyafeai results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: ar metrics: - type: wer value: 34.28 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ar_eg split: test args: ar metrics: - type: wer value: 12.04 name: Wer --- # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8488 - Wer: 16.5882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2963 | 0.1 | 1000 | 0.9115 | 27.3641 | | 0.2676 | 0.2 | 2000 | 0.8796 | 24.1024 | | 0.3166 | 0.3 | 3000 | 0.8467 | 20.1700 | | 0.2797 | 0.4 | 4000 | 0.8756 | 29.4889 | | 0.2302 | 0.5 | 5000 | 0.8523 | 19.6414 | | 0.2803 | 0.6 | 6000 | 0.8715 | 19.7413 | | 0.2794 | 0.7 | 7000 | 0.8548 | 18.6840 | | 0.2173 | 0.8 | 8000 | 0.8543 | 17.9019 | | 0.217 | 0.9 | 9000 | 0.8518 | 16.3840 | | 0.1718 | 1.0 | 10000 | 0.8488 | 16.5882 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2