--- license: apache-2.0 datasets: - stanfordnlp/imdb language: - en base_model: - distilbert/distilbert-base-uncased pipeline_tag: zero-shot-classification library_name: transformers --- Example code: ```python3 # Sample text to predict text = "I love this movie, it was fantastic!" # Tokenize the input text inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) # Get model predictions with torch.no_grad(): outputs = model(**inputs) # Get the logits (model's raw output) logits = outputs.logits # Convert logits to probabilities (if needed) and get the predicted class (0 or 1) predictions = torch.argmax(logits, dim=-1).item() # Map the prediction to sentiment labels labels = {0: "NEGATIVE", 1: "POSITIVE"} # Assuming binary classification predicted_label = labels[predictions] print(f"Predicted Sentiment: {predicted_label}") ``` ---