--- language: - pa license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: XLS-R-300M - Punjabi results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: pa-IN metrics: - type: wer value: 45.611 name: Test WER - name: Test CER type: cer value: 15.584 --- # XLS-R-300M - Punjabi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2548 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.4804 | 16.65 | 400 | 1.8461 | 1.0 | | 0.474 | 33.33 | 800 | 1.1018 | 0.6624 | | 0.1389 | 49.98 | 1200 | 1.1918 | 0.6103 | | 0.0919 | 66.65 | 1600 | 1.1889 | 0.6058 | | 0.0657 | 83.33 | 2000 | 1.2266 | 0.5931 | | 0.0479 | 99.98 | 2400 | 1.2512 | 0.5902 | | 0.0355 | 116.65 | 2800 | 1.2548 | 0.5677 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-pa-in --dataset mozilla-foundation/common_voice_7_0 --config pa-IN --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-pa-in" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "pa-IN", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "ਉਨ੍ਹਾਂ ਨੇ ਸਾਰੇ ਤੇਅਰਵੇ ਵੱਖਰੀ ਕਿਸਮ ਦੇ ਕੀਤੇ ਹਨ" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 51.968 | 45.611 |