speech-test commited on
Commit
c58cb21
·
1 Parent(s): 0841e76

Flexible resampling

Browse files
Files changed (1) hide show
  1. README.md +5 -6
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: 40.03
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Chuvash
@@ -82,7 +82,7 @@ from tqdm.auto import tqdm
82
  from datasets import load_metric
83
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
84
 
85
- # Download the raw data instead of using HF datasets to save space
86
  data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/cv.tar.gz"
87
  filestream = urllib.request.urlopen(data_url)
88
  data_file = tarfile.open(fileobj=filestream, mode="r|gz")
@@ -105,16 +105,15 @@ def clean_sentence(sent):
105
  sent = " ".join(sent.split())
106
  return sent
107
 
108
- resampler = torchaudio.transforms.Resample(48_000, 16_000)
109
-
110
  targets = []
111
  preds = []
112
 
113
  for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
114
  row["sentence"] = clean_sentence(row["sentence"])
115
  speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
 
116
  row["speech"] = resampler(speech_array).squeeze().numpy()
117
-
118
  inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
119
 
120
  with torch.no_grad():
@@ -128,7 +127,7 @@ for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
128
  print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
129
  ```
130
 
131
- **Test Result**: 40.03 %
132
 
133
 
134
  ## Training
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 40.01
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Chuvash
 
82
  from datasets import load_metric
83
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
84
 
85
+ # Download the raw data instead of using HF datasets to save disk space
86
  data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/cv.tar.gz"
87
  filestream = urllib.request.urlopen(data_url)
88
  data_file = tarfile.open(fileobj=filestream, mode="r|gz")
 
105
  sent = " ".join(sent.split())
106
  return sent
107
 
 
 
108
  targets = []
109
  preds = []
110
 
111
  for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
112
  row["sentence"] = clean_sentence(row["sentence"])
113
  speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
114
+ resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
115
  row["speech"] = resampler(speech_array).squeeze().numpy()
116
+
117
  inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
118
 
119
  with torch.no_grad():
 
127
  print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
128
  ```
129
 
130
+ **Test Result**: 40.01 %
131
 
132
 
133
  ## Training