Text Classification
sentence-transformers
Safetensors
xmod
passage-reranking
File size: 5,573 Bytes
1fcfa5d
4e95be6
1fcfa5d
 
 
 
 
 
4e95be6
1fcfa5d
4e95be6
1fcfa5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edfdab
1fcfa5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00051d7
1fcfa5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
pipeline_tag: text-classification
datasets:
- ms_marco
- sentence-transformers/msmarco-hard-negatives
metrics:
- recall
tags:
- passage-reranking
library_name: sentence-transformers
base_model: facebook/xmod-base
inference: false
language: 
- multilingual
- af
- am
- ar
- az
- be
- bg
- bn
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- si
- sk
- sl
- so
- sq
- sr
- sv
- sw
- ta
- te
- th
- tl
- tr
- uk
- ur
- uz
- vi
- zh
---

<h1 align="center">Mono-XM</h1>


<h4 align="center">
  <p>
      <a href=#usage>🛠️ Usage</a>  |
      <a href="#evaluation">📊 Evaluation</a> |
      <a href="#train">🤖 Training</a> |
      <a href="#citation">🔗 Citation</a> |
      <a href="https://github.com/ant-louis/xm-retrievers">💻 Code</a>
  <p>
</h4>


This is a **multilingual** cross-encoder model. It performs cross-attention between a question-passage 
pair and outputs a relevance score between 0 and 1. The model should be used as a reranker for semantic search: given a query, encode the latter with some candidate 
passages -- e.g., retrieved with BM25 or a bi-encoder -- then sort the passages in a decreasing order of relevance according to the model's predictions. 
The model uses an [XMOD](https://huggingface.co/facebook/xmod-base) backbone, which allows it to learn from monolingual fine-tuning 
in a high-resource language, like English, and performs zero-shot transfer to other languages.

## Usage

Here are some examples for using the model with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers).

#### Using Sentence-Transformers

Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this:

```python
from sentence_transformers import CrossEncoder

pairs = [
  ('Première question', 'Ceci est un paragraphe pertinent.'),
  ('Voici une autre requête', 'Et voilà un paragraphe non pertinent.'),
]
language_code = "fr_FR" #Find all codes here: https://huggingface.co/facebook/xmod-base#languages

model = CrossEncoder('antoinelouis/mono-xm')
model.model.set_default_language(language_code) #Activate the language-specific adapters

scores = model.predict(pairs)
print(scores)
```

#### Using FlagEmbedding

Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this:

```python
from FlagEmbedding import FlagReranker

pairs = [
  ('Première question', 'Ceci est un paragraphe pertinent.'),
  ('Voici une autre requête', 'Et voilà un paragraphe non pertinent.'),
]
language_code = "fr_FR" #Find all codes here: https://huggingface.co/facebook/xmod-base#languages

model = FlagReranker('antoinelouis/mono-xm')
model.model.set_default_language(language_code) #Activate the language-specific adapters

scores = model.compute_score(pairs)
print(scores)
```

#### Using Transformers

Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:

```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

pairs = [
  ('Première question', 'Ceci est un paragraphe pertinent.'),
  ('Voici une autre requête', 'Et voilà un paragraphe non pertinent.'),
]
language_code = "fr_FR" #Find all codes here: https://huggingface.co/facebook/xmod-base#languages

tokenizer = AutoTokenizer.from_pretrained('antoinelouis/mono-xm')
model = AutoModelForSequenceClassification.from_pretrained('antoinelouis/mono-xm')
model.set_default_language(language_code) #Activate the language-specific adapters

features = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
    scores = model(**features).logits
print(scores)
```

***

## Evaluation

[to come...]

***

## Training

#### Data

We use the English training samples from the [MS MARCO passage ranking](https://ir-datasets.com/msmarco-passage.html#msmarco-passage/train) dataset, which contains 
8.8M passages and 539K training queries. We use the BM25 negatives provided by the official dataset and sample 1M (q, p) pairs with a 1/4 positive-to-negative ratio 
(i.e., 250k query-positive pairs for 750k query-negative pairs).

#### Implementation

The model is initialized from the [xmod-base](https://huggingface.co/facebook/xmod-base) checkpoint and optimized via the binary cross-entropy loss 
(as in [monoBERT](https://doi.org/10.48550/arXiv.1910.14424)). It is fine-tuned on one 32GB NVIDIA V100 GPU for 5 epochs using the AdamW optimizer with 
a batch size of 32, a peak learning rate of 2e-5 with warm up along the first 10\% of training steps and linear scheduling. We set the maximum sequence 
lengths for the concatenated question-passage pairs to 512 tokens.

***

## Citation

```bibtex
@article{louis2024modular,
  author = {Louis, Antoine and Saxena, Vageesh and van Dijck, Gijs and Spanakis, Gerasimos},
  title = {ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval},
  journal = {CoRR},
  volume = {abs/2402.15059},
  year = {2024},
  url = {https://arxiv.org/abs/2402.15059},
  doi = {10.48550/arXiv.2402.15059},
  eprinttype = {arXiv},
  eprint = {2402.15059},
}
```