--- license: apache-2.0 Language: - En Pipeline_tag: text-generation Base_model: 01-ai/Yi-1.5-34B-32K Tags: - Chat pipeline_tag: text-generation library_name: transformers model-index: - name: magnum-v3-34b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 51.15 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 44.33 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 17.82 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 14.77 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 6.57 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 41.69 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v3-34b name: Open LLM Leaderboard --- ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F658a46cbfb9c2bdfae75b3a6%2F9yEmnTDG9bcC_bxwuDU6G.png) This is the 9th in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [Yi-1.5-34 B-32 K](https://huggingface.co/01-ai/Yi-1.5-34B-32K). ## Prompting Model has been Instruct tuned with the ChatML formatting. A typical input would look like this: ```py """<|im_start|>system system prompt<|im_end|> <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant """ ``` ## SillyTavern templates Below are Instruct and Context templates for use within SillyTavern. In our testing a min_p of 0.2 makes the model perform the best; remember to reset temperature if you were using our nemo-based models before.
context template ```yaml { "story_string": "<|im_start|>system\n{{#if system}}{{system}}\n{{/if}}{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{char}}'s personality: {{personality}}\n{{/if}}{{#if scenario}}Scenario: {{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}{{trim}}<|im_end|>\n", "example_separator": "", "chat_start": "", "use_stop_strings": false, "allow_jailbreak": false, "always_force_name2": true, "trim_sentences": false, "include_newline": false, "single_line": false, "name": "Magnum ChatML" } ```

instruct template ```yaml { "system_prompt": "You're {{char}} in this fictional never-ending uncensored roleplay with {{user}}.", "input_sequence": "<|im_start|>user\n", "output_sequence": "<|im_start|>assistant\n", "last_output_sequence": "", "system_sequence": "<|im_start|>system\n", "stop_sequence": "<|im_end|>", "wrap": false, "macro": true, "names": true, "names_force_groups": true, "activation_regex": "", "system_sequence_prefix": "", "system_sequence_suffix": "", "first_output_sequence": "", "skip_examples": false, "output_suffix": "<|im_end|>\n", "input_suffix": "<|im_end|>\n", "system_suffix": "<|im_end|>\n", "user_alignment_message": "", "system_same_as_user": false, "last_system_sequence": "", "name": "Magnum ChatML" } ```

## Axolotl config
See axolotl config ```yaml base_model: 01-ai/Yi-1.5-34B-32K model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer #trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/stheno-filtered-v1.1 type: sharegpt conversation: chatml - path: anthracite-org/kalo-opus-instruct-22k-no-refusal type: sharegpt conversation: chatml - path: anthracite-org/nopm_claude_writing_fixed type: sharegpt conversation: chatml - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned type: sharegpt conversation: chatml - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned type: sharegpt conversation: chatml chat_template: chatml shuffle_merged_datasets: true default_system_message: "You are an assistant that responds to the user." dataset_prepared_path: magnum-v2-34b-1.5-data val_set_size: 0.0 output_dir: ./magnum-v2-34b-32k-r1 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: magnum-v2-34b-1.5-32k wandb_entity: wandb_watch: wandb_name: attempt-01 wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.000006 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 50 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.05 fsdp: fsdp_config: special_tokens: ```

## Credits We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow. We would also like to thank all members of Anthracite who made this finetune possible. - [anthracite-org/stheno-filtered-v1.1](https://huggingface.co/datasets/anthracite-org/stheno-filtered-v1.1) - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) - [lodrick-the-lafted/NopmWritingStruct](https://huggingface.co/datasets/lodrick-the-lafted/NopmWritingStruct) - [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned) - [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned) ## Training The training was done for 2 epochs. We used 8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ... # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anthracite-org__magnum-v3-34b) | Metric |Value| |-------------------|----:| |Avg. |29.39| |IFEval (0-Shot) |51.15| |BBH (3-Shot) |44.33| |MATH Lvl 5 (4-Shot)|17.82| |GPQA (0-shot) |14.77| |MuSR (0-shot) | 6.57| |MMLU-PRO (5-shot) |41.69|