Update README.md
Browse files
README.md
CHANGED
@@ -16,52 +16,6 @@ While being MiniLM-sized, it outperforms all previous similarly-sized models on
|
|
16 |
|
17 |
For more information about this model or how it was trained, head over to the [announcement blogpost](https://www.answer.ai/posts/2024-08-13-small-but-mighty-colbert.html).
|
18 |
|
19 |
-
## Results
|
20 |
-
|
21 |
-
### Against single-vector models
|
22 |
-
|
23 |
-
![](https://www.answer.ai/posts/images/minicolbert/small_results.png)
|
24 |
-
|
25 |
-
|
26 |
-
| Dataset / Model | answer-colbert-s | snowflake-s | bge-small-en | bge-base-en |
|
27 |
-
|:-----------------|:-----------------:|:-------------:|:-------------:|:-------------:|
|
28 |
-
| **Size** | 33M (1x) | 33M (1x) | 33M (1x) | **109M (3.3x)** |
|
29 |
-
| **BEIR AVG** | **53.79** | 51.99 | 51.68 | 53.25 |
|
30 |
-
| **FiQA2018** | **41.15** | 40.65 | 40.34 | 40.65 |
|
31 |
-
| **HotpotQA** | **76.11** | 66.54 | 69.94 | 72.6 |
|
32 |
-
| **MSMARCO** | **43.5** | 40.23 | 40.83 | 41.35 |
|
33 |
-
| **NQ** | **59.1** | 50.9 | 50.18 | 54.15 |
|
34 |
-
| **TRECCOVID** | **84.59** | 80.12 | 75.9 | 78.07 |
|
35 |
-
| **ArguAna** | 50.09 | 57.59 | 59.55 | **63.61** |
|
36 |
-
| **ClimateFEVER**| **33.07** | 35.2 | 31.84 | 31.17 |
|
37 |
-
| **CQADupstackRetrieval** | 38.75 | 39.65 | 39.05 | **42.35** |
|
38 |
-
| **DBPedia** | **45.58** | 41.02 | 40.03 | 40.77 |
|
39 |
-
| **FEVER** | **90.96** | 87.13 | 86.64 | 86.29 |
|
40 |
-
| **NFCorpus** | **37.3** | 34.92 | 34.3 | 37.39 |
|
41 |
-
| **QuoraRetrieval** | 87.72 | 88.41 | **88.78** | 88.9 |
|
42 |
-
| **SCIDOCS** | 18.42 | **21.82** | 20.52 | 21.73 |
|
43 |
-
| **SciFact** | **74.77** | 72.22 | 71.28 | 74.04 |
|
44 |
-
| **Touche2020** | 25.69 | 23.48 | **26.04** | 25.7 |
|
45 |
-
|
46 |
-
### Against ColBERTv2.0
|
47 |
-
|
48 |
-
| Dataset / Model | answerai-colbert-small-v1 | ColBERTv2.0 |
|
49 |
-
|:-----------------|:-----------------------:|:------------:|
|
50 |
-
| **BEIR AVG** | **53.79** | 50.02 |
|
51 |
-
| **DBPedia** | **45.58** | 44.6 |
|
52 |
-
| **FiQA2018** | **41.15** | 35.6 |
|
53 |
-
| **NQ** | **59.1** | 56.2 |
|
54 |
-
| **HotpotQA** | **76.11** | 66.7 |
|
55 |
-
| **NFCorpus** | **37.3** | 33.8 |
|
56 |
-
| **TRECCOVID** | **84.59** | 73.3 |
|
57 |
-
| **Touche2020** | 25.69 | **26.3** |
|
58 |
-
| **ArguAna** | **50.09** | 46.3 |
|
59 |
-
| **ClimateFEVER**| **33.07** | 17.6 |
|
60 |
-
| **FEVER** | **90.96** | 78.5 |
|
61 |
-
| **QuoraRetrieval** | **87.72** | 85.2 |
|
62 |
-
| **SCIDOCS** | **18.42** | 15.4 |
|
63 |
-
| **SciFact** | **74.77** | 69.3 |
|
64 |
-
|
65 |
## Usage
|
66 |
|
67 |
### Installation
|
@@ -93,6 +47,19 @@ ranker.rank(query=query, docs=docs)
|
|
93 |
|
94 |
### RAGatouille
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
### Stanford ColBERT
|
97 |
|
98 |
#### Indexing
|
@@ -149,4 +116,51 @@ from colbert.modeling.checkpoint import Checkpoint
|
|
149 |
|
150 |
ckpt = Checkpoint(answerdotai/answerai-colbert-small-v1", colbert_config=ColBERTConfig())
|
151 |
embedded_query = ckpt.queryFromText(["Who dubs Howl's in English?"], bsize=16)
|
152 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
For more information about this model or how it was trained, head over to the [announcement blogpost](https://www.answer.ai/posts/2024-08-13-small-but-mighty-colbert.html).
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
## Usage
|
20 |
|
21 |
### Installation
|
|
|
47 |
|
48 |
### RAGatouille
|
49 |
|
50 |
+
```python
|
51 |
+
from ragatouille import RAGPretrainedModel
|
52 |
+
|
53 |
+
RAG = RAGPretrainedModel.from_pretrained("answerdotai/answerai-colbert-small-v1")
|
54 |
+
|
55 |
+
docs = ['Hayao Miyazaki is a Japanese director, born on [...]', 'Walt Disney is an American author, director and [...]', ...]
|
56 |
+
|
57 |
+
RAG.index(documents, index_name="ghibli")
|
58 |
+
|
59 |
+
query = 'Who directed spirited away?'
|
60 |
+
results = RAG.search(query)
|
61 |
+
```
|
62 |
+
|
63 |
### Stanford ColBERT
|
64 |
|
65 |
#### Indexing
|
|
|
116 |
|
117 |
ckpt = Checkpoint(answerdotai/answerai-colbert-small-v1", colbert_config=ColBERTConfig())
|
118 |
embedded_query = ckpt.queryFromText(["Who dubs Howl's in English?"], bsize=16)
|
119 |
+
```
|
120 |
+
|
121 |
+
|
122 |
+
## Results
|
123 |
+
|
124 |
+
### Against single-vector models
|
125 |
+
|
126 |
+
![](https://www.answer.ai/posts/images/minicolbert/small_results.png)
|
127 |
+
|
128 |
+
|
129 |
+
| Dataset / Model | answer-colbert-s | snowflake-s | bge-small-en | bge-base-en |
|
130 |
+
|:-----------------|:-----------------:|:-------------:|:-------------:|:-------------:|
|
131 |
+
| **Size** | 33M (1x) | 33M (1x) | 33M (1x) | **109M (3.3x)** |
|
132 |
+
| **BEIR AVG** | **53.79** | 51.99 | 51.68 | 53.25 |
|
133 |
+
| **FiQA2018** | **41.15** | 40.65 | 40.34 | 40.65 |
|
134 |
+
| **HotpotQA** | **76.11** | 66.54 | 69.94 | 72.6 |
|
135 |
+
| **MSMARCO** | **43.5** | 40.23 | 40.83 | 41.35 |
|
136 |
+
| **NQ** | **59.1** | 50.9 | 50.18 | 54.15 |
|
137 |
+
| **TRECCOVID** | **84.59** | 80.12 | 75.9 | 78.07 |
|
138 |
+
| **ArguAna** | 50.09 | 57.59 | 59.55 | **63.61** |
|
139 |
+
| **ClimateFEVER**| **33.07** | 35.2 | 31.84 | 31.17 |
|
140 |
+
| **CQADupstackRetrieval** | 38.75 | 39.65 | 39.05 | **42.35** |
|
141 |
+
| **DBPedia** | **45.58** | 41.02 | 40.03 | 40.77 |
|
142 |
+
| **FEVER** | **90.96** | 87.13 | 86.64 | 86.29 |
|
143 |
+
| **NFCorpus** | **37.3** | 34.92 | 34.3 | 37.39 |
|
144 |
+
| **QuoraRetrieval** | 87.72 | 88.41 | **88.78** | 88.9 |
|
145 |
+
| **SCIDOCS** | 18.42 | **21.82** | 20.52 | 21.73 |
|
146 |
+
| **SciFact** | **74.77** | 72.22 | 71.28 | 74.04 |
|
147 |
+
| **Touche2020** | 25.69 | 23.48 | **26.04** | 25.7 |
|
148 |
+
|
149 |
+
### Against ColBERTv2.0
|
150 |
+
|
151 |
+
| Dataset / Model | answerai-colbert-small-v1 | ColBERTv2.0 |
|
152 |
+
|:-----------------|:-----------------------:|:------------:|
|
153 |
+
| **BEIR AVG** | **53.79** | 50.02 |
|
154 |
+
| **DBPedia** | **45.58** | 44.6 |
|
155 |
+
| **FiQA2018** | **41.15** | 35.6 |
|
156 |
+
| **NQ** | **59.1** | 56.2 |
|
157 |
+
| **HotpotQA** | **76.11** | 66.7 |
|
158 |
+
| **NFCorpus** | **37.3** | 33.8 |
|
159 |
+
| **TRECCOVID** | **84.59** | 73.3 |
|
160 |
+
| **Touche2020** | 25.69 | **26.3** |
|
161 |
+
| **ArguAna** | **50.09** | 46.3 |
|
162 |
+
| **ClimateFEVER**| **33.07** | 17.6 |
|
163 |
+
| **FEVER** | **90.96** | 78.5 |
|
164 |
+
| **QuoraRetrieval** | **87.72** | 85.2 |
|
165 |
+
| **SCIDOCS** | **18.42** | 15.4 |
|
166 |
+
| **SciFact** | **74.77** | 69.3 |
|