ankandrew commited on
Commit
4e504a6
·
1 Parent(s): e101836

First train

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1033.94 +/- 46.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d16163a1b5efdf358bdf08e056ad7d9ccf7980eab59bf834510435ec233b01c3
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe25b589670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe25b589700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe25b589790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe25b589820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe25b5898b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe25b589940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe25b5899d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe25b589a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe25b589af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe25b589b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe25b589c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe25b589ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fe25b58c240>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679780166838947648,
68
+ "learning_rate": 0.0001,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALKJHb+p544/YDMBPxrFqr7zN9O8zv73PTXzgT9N3tw+uDyzPOvAMbwK4Ym9RzquvegEhz5WaMW9NTHZvlkigD0UBwK/8p83vSySbj8LxCQ8uot+P6nglzsAzpG/n5Ykvde3lT411G8+PaW1PrgjDj9oUIm/hFuSvkdAuT4EN6O+z7LyPZB2/T2HmjA/Lme/PgBW1zzLtma8LKkRv5oaHb0kdBw/lpXuvNLuP72m/TQ9Jn5Uv+jqMrxyfXQ/MWxwPbInjz9KhUy8HISSv+bWR73Xt5U+NdRvPj2ltT64Iw4/QAXEvs1bub/Z7Ta/aZhOvm8qnT1FM909YEpDP3O8rT/SlCA/fAQDvGP9Eb9aqKS8U/GaP1w2jb1esoS/1mStPQmECD9RB4O9cLoiPi/pmD3mZp2/87OKvZDkkr+OECO917eVPjXUbz49pbU+uCMOP/Af3L5qTdq/9eeqvxBaor7WMuA9H6byPVKQJj/Vd5c/tSRlP/g3LzpGpRC/pTxPvai3lT+Zb2G81S1av5fAMj0bzKo+FPoZO22pCj4iLUE9KpepvwsbmjqkQoC/OJw1vde3lT411G8+PaW1PrgjDj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoTqC1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbjfLPQAAAAA4Dfm/AAAAAJ4t6j0AAAAAZRriPwAAAABy+pU8AAAAAEE55j8AAAAAXHm+PQAAAADpXeu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACceMtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDtgkD0AAAAAih8AwAAAAACNUSS9AAAAAFT35z8AAAAAwKQFPgAAAABn8eo/AAAAANUUgD0AAAAAOQ7dvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpEnTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvOT49AAAAAPqk/L8AAAAActbfPQAAAAB7C/o/AAAAABHPpzsAAAAAK5buPwAAAABmyqI8AAAAACEx2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2zlC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABzAVPQAAAAC5gwDAAAAAAIO7B74AAAAATgHpPwAAAABJ5Po9AAAAAIcK3D8AAAAAeHy8PQAAAAChRPe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIvJTV2A5JeMAWyUTegDjAF0lEdArYYbd+G47XV9lChoBkdAjtxjyWiUPmgHTegDaAhHQK2HNWV/tpp1fZQoaAZHQI4noxL0z0poB03oA2gIR0Cth3MHryDqdX2UKGgGR0COl2pVCHARaAdN6ANoCEdArYfl8qnWKHV9lChoBkdAj8igXuVopWgHTegDaAhHQK2XDTEzfrN1fZQoaAZHQI05zRBu4w1oB03oA2gIR0CtmAbdadMCdX2UKGgGR0COxmwMYuTSaAdN6ANoCEdArZgsSZjQRnV9lChoBkdAiaCt+so2GmgHTegDaAhHQK2YeDJ2dNF1fZQoaAZHQI3ra4H5aeRoB03oA2gIR0CtpBix/ustdX2UKGgGR0CLc0PvrnklaAdN6ANoCEdAraUQRbr1NHV9lChoBkdAjwZllK9PDmgHTegDaAhHQK2lN4k/r0J1fZQoaAZHQI+dE6xPfsNoB03oA2gIR0CtpYUaQ3gldX2UKGgGR0CKoF6Q/5ckaAdN6ANoCEdArbUsm2LHdXV9lChoBkdAjoVYf4h2XGgHTegDaAhHQK22IsLfDUF1fZQoaAZHQIsSYe7tiQVoB03oA2gIR0Cttkdi2DxtdX2UKGgGR0COKNdSEUTMaAdN6ANoCEdArbaRBAv+O3V9lChoBkdAkCXiTEBKc2gHTegDaAhHQK3BwLBKtgd1fZQoaAZHQI5dZ1HOKO1oB03oA2gIR0Ctwrmbb1yvdX2UKGgGR0CMjCdGy5ZsaAdN6ANoCEdArcLe0gKWs3V9lChoBkdAjpMWxyGSIWgHTegDaAhHQK3DLbVz6rN1fZQoaAZHQI5G0wlByCFoB03oA2gIR0Ct0qNwJgLJdX2UKGgGR0COZDuVHFxXaAdN6ANoCEdArdOZlMAWBXV9lChoBkdAj3bqB/Zuh2gHTegDaAhHQK3TwU5dWyV1fZQoaAZHQI/W0b5uZThoB03oA2gIR0Ct1Az7l7tzdX2UKGgGR0CPhwVv/BFeaAdN6ANoCEdArd9bamGdqnV9lChoBkdAkDSetSydF2gHTegDaAhHQK3gX4Hooux1fZQoaAZHQI6sjSNOuaFoB03oA2gIR0Ct4IWphnandX2UKGgGR0CLqcB3iaRZaAdN6ANoCEdAreDUm8dxQ3V9lChoBkdAjZMFSS/0umgHTegDaAhHQK3wtDu0CzV1fZQoaAZHQIoUVqYZ2p1oB03oA2gIR0Ct8aj0cwQEdX2UKGgGR0COZg9W6shgaAdN6ANoCEdArfHQNEw353V9lChoBkdAjWxBaC+UQmgHTegDaAhHQK3yHFUADJV1fZQoaAZHQI6K6sKb8WNoB03oA2gIR0Ct/V/yGzrvdX2UKGgGR0CPoHiExqO+aAdN6ANoCEdArf5W0svqT3V9lChoBkdAjlLe4Cp3o2gHTegDaAhHQK3+gViWmgt1fZQoaAZHQI5Om/+KjztoB03oA2gIR0Ct/s0lRgqmdX2UKGgGR0CO9vDKoybhaAdN6ANoCEdArg21bLU1AXV9lChoBkdAjpYa0x/NJWgHTegDaAhHQK4PQ+HrQgN1fZQoaAZHQJDCR1zQu29oB03oA2gIR0CuD2nzH0btdX2UKGgGR0CLqO6q814xaAdN6ANoCEdArg+2vwEyL3V9lChoBkdAjnVKOtGNJmgHTegDaAhHQK4bPbmEGqx1fZQoaAZHQIkFTyrgflpoB03oA2gIR0CuHDoUi6g/dX2UKGgGR0CPlBwYtQKsaAdN6ANoCEdArhxfDgqEvnV9lChoBkdAjIKkZaV2R2gHTegDaAhHQK4crQ66reZ1fZQoaAZHQI78qu2Zy+9oB03oA2gIR0CuKrUkGA09dX2UKGgGR0COx5RekYXPaAdN6ANoCEdArixNnEl3QnV9lChoBkdAjq/34bjtHGgHTegDaAhHQK4sjMHryDt1fZQoaAZHQI6+kcS5AhVoB03oA2gIR0CuLRXwkPc0dX2UKGgGR0CO094bCJoCaAdN6ANoCEdArjjNkOI683V9lChoBkdAjt7jsdDIBGgHTegDaAhHQK45wDvmYBx1fZQoaAZHQI55Q1aW5YpoB03oA2gIR0CuOeZqubI+dX2UKGgGR0CPIkBiCrcTaAdN6ANoCEdArjo4UzsQd3V9lChoBkdAkBIDK9wm3WgHTegDaAhHQK5HcWoFV1h1fZQoaAZHQI5NWzF+/g1oB03oA2gIR0CuSQovrWy1dX2UKGgGR0COfO+fRNRFaAdN6ANoCEdArklJ/d69kHV9lChoBkdAkDoZ8Sf16GgHTegDaAhHQK5Jxu63AmB1fZQoaAZHQIxaU7dSEUVoB03oA2gIR0CuVsEJSiuddX2UKGgGR0CQGXLnLaEjaAdN6ANoCEdArle08aGYbHV9lChoBkdAj3eSf+S8rmgHTegDaAhHQK5X20UoKD11fZQoaAZHQJAfGPsAvL5oB03oA2gIR0CuWCf1YhdMdX2UKGgGR0CPj7FR51NhaAdN6ANoCEdArmSRdfLLZHV9lChoBkdAkB8+P3i71GgHTegDaAhHQK5mBQk5ZKZ1fZQoaAZHQIu1wsRQJoloB03oA2gIR0CuZkdZRsMzdX2UKGgGR0CQccHbh3qzaAdN6ANoCEdArmbDFwT/Q3V9lChoBkdAjCNTqB3A22gHTegDaAhHQK50gE6kqMF1fZQoaAZHQIvjHYODrZ9oB03oA2gIR0CudXdWyTpxdX2UKGgGR0CPNOdU83dcaAdN6ANoCEdArnWd58jRlnV9lChoBkdAj2jUzsQd0mgHTegDaAhHQK519lJ6IFh1fZQoaAZHQI9V3VEuxr1oB03oA2gIR0CugXCZF5OadX2UKGgGR0CNgs619fCzaAdN6ANoCEdAroLrDl5nlHV9lChoBkdAkIHcnNPgvWgHTegDaAhHQK6DJA1Nxlx1fZQoaAZHQIufgyqMm4RoB03oA2gIR0Cug5G6f8MvdX2UKGgGR0CPofKODJ2daAdN6ANoCEdArpI+iJwbVHV9lChoBkdAjfs32VVxTGgHTegDaAhHQK6TNnZCfHx1fZQoaAZHQI4E6fthNM5oB03oA2gIR0Cuk1vHLidbdX2UKGgGR0CODOaz/p+uaAdN6ANoCEdArpOmys0YTHV9lChoBkdAj8wRsVLzw2gHTegDaAhHQK6e8A5Jbt91fZQoaAZHQI9e6yB06o5oB03oA2gIR0Cun/iWVu76dX2UKGgGR0CN8lXAdn01aAdN6ANoCEdArqA0i8nNPnV9lChoBkdAjyZTM7lq8GgHTegDaAhHQK6grbs4T9N1fZQoaAZHQJAi/xtpEhJoB03oA2gIR0CusBdMK1G9dX2UKGgGR0CPLifNiYsvaAdN6ANoCEdArrEOXw9aEHV9lChoBkdAhkDOTibUgGgHTegDaAhHQK6xNl2/zrh1fZQoaAZHQI+/Kdz4k/toB03oA2gIR0CusYZIpYs/dX2UKGgGR0CPAQWBz3h5aAdN6ANoCEdArrzTS3LFGXV9lChoBkdAj0V9hRZU1mgHTegDaAhHQK69zc+JP691fZQoaAZHQIvmGE0zj3poB03oA2gIR0CuvfPsqrimdX2UKGgGR0CQG+ZCv5gxaAdN6ANoCEdArr49liBoVXV9lChoBkdAj4EdvjwQUmgHTegDaAhHQK7N6XaakRB1fZQoaAZHQI17zZnL7oBoB03oA2gIR0CuzubdBSk1dX2UKGgGR0CHSnxPO6d2aAdN6ANoCEdArs8LNB4UvnV9lChoBkdAjzuzreIl+mgHTegDaAhHQK7PU1n/T9d1fZQoaAZHQIozTrNW2gFoB03oA2gIR0Cu2tutfXwtdX2UKGgGR0CPQkBg/keZaAdN6ANoCEdArtvP8/D+BHV9lChoBkdAj6CBMi8nNWgHTegDaAhHQK7b9wQ176Z1fZQoaAZHQIZb/d43WFxoB03oA2gIR0Cu3EJIMBp6dX2UKGgGR0CO5WRjjJdTaAdN6ANoCEdAruu9IuoP1HV9lChoBkdAjl3E9+w1SGgHTegDaAhHQK7ss052hZh1fZQoaAZHQIaGBjx0+1VoB03oA2gIR0Cu7NkxREWqdX2UKGgGR0COT4GGEf1ZaAdN6ANoCEdAru0pMvh60XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 50000,
99
+ "n_steps": 10,
100
+ "gamma": 0.98,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa737039d1cfaf23f9b07d60c4c3b2c46530d38d19d876c94ac9d976ebca7515
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d6e2620be0e410003ee628a2c359ec2c0d1b5e3757aec64116333b468cff111
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe25b589670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe25b589700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe25b589790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe25b589820>", "_build": "<function ActorCriticPolicy._build at 0x7fe25b5898b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe25b589940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe25b5899d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe25b589a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe25b589af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe25b589b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe25b589c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe25b589ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe25b58c240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679780166838947648, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALKJHb+p544/YDMBPxrFqr7zN9O8zv73PTXzgT9N3tw+uDyzPOvAMbwK4Ym9RzquvegEhz5WaMW9NTHZvlkigD0UBwK/8p83vSySbj8LxCQ8uot+P6nglzsAzpG/n5Ykvde3lT411G8+PaW1PrgjDj9oUIm/hFuSvkdAuT4EN6O+z7LyPZB2/T2HmjA/Lme/PgBW1zzLtma8LKkRv5oaHb0kdBw/lpXuvNLuP72m/TQ9Jn5Uv+jqMrxyfXQ/MWxwPbInjz9KhUy8HISSv+bWR73Xt5U+NdRvPj2ltT64Iw4/QAXEvs1bub/Z7Ta/aZhOvm8qnT1FM909YEpDP3O8rT/SlCA/fAQDvGP9Eb9aqKS8U/GaP1w2jb1esoS/1mStPQmECD9RB4O9cLoiPi/pmD3mZp2/87OKvZDkkr+OECO917eVPjXUbz49pbU+uCMOP/Af3L5qTdq/9eeqvxBaor7WMuA9H6byPVKQJj/Vd5c/tSRlP/g3LzpGpRC/pTxPvai3lT+Zb2G81S1av5fAMj0bzKo+FPoZO22pCj4iLUE9KpepvwsbmjqkQoC/OJw1vde3lT411G8+PaW1PrgjDj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoTqC1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbjfLPQAAAAA4Dfm/AAAAAJ4t6j0AAAAAZRriPwAAAABy+pU8AAAAAEE55j8AAAAAXHm+PQAAAADpXeu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACceMtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDtgkD0AAAAAih8AwAAAAACNUSS9AAAAAFT35z8AAAAAwKQFPgAAAABn8eo/AAAAANUUgD0AAAAAOQ7dvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpEnTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvOT49AAAAAPqk/L8AAAAActbfPQAAAAB7C/o/AAAAABHPpzsAAAAAK5buPwAAAABmyqI8AAAAACEx2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2zlC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABzAVPQAAAAC5gwDAAAAAAIO7B74AAAAATgHpPwAAAABJ5Po9AAAAAIcK3D8AAAAAeHy8PQAAAAChRPe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIvJTV2A5JeMAWyUTegDjAF0lEdArYYbd+G47XV9lChoBkdAjtxjyWiUPmgHTegDaAhHQK2HNWV/tpp1fZQoaAZHQI4noxL0z0poB03oA2gIR0Cth3MHryDqdX2UKGgGR0COl2pVCHARaAdN6ANoCEdArYfl8qnWKHV9lChoBkdAj8igXuVopWgHTegDaAhHQK2XDTEzfrN1fZQoaAZHQI05zRBu4w1oB03oA2gIR0CtmAbdadMCdX2UKGgGR0COxmwMYuTSaAdN6ANoCEdArZgsSZjQRnV9lChoBkdAiaCt+so2GmgHTegDaAhHQK2YeDJ2dNF1fZQoaAZHQI3ra4H5aeRoB03oA2gIR0CtpBix/ustdX2UKGgGR0CLc0PvrnklaAdN6ANoCEdAraUQRbr1NHV9lChoBkdAjwZllK9PDmgHTegDaAhHQK2lN4k/r0J1fZQoaAZHQI+dE6xPfsNoB03oA2gIR0CtpYUaQ3gldX2UKGgGR0CKoF6Q/5ckaAdN6ANoCEdArbUsm2LHdXV9lChoBkdAjoVYf4h2XGgHTegDaAhHQK22IsLfDUF1fZQoaAZHQIsSYe7tiQVoB03oA2gIR0Cttkdi2DxtdX2UKGgGR0COKNdSEUTMaAdN6ANoCEdArbaRBAv+O3V9lChoBkdAkCXiTEBKc2gHTegDaAhHQK3BwLBKtgd1fZQoaAZHQI5dZ1HOKO1oB03oA2gIR0Ctwrmbb1yvdX2UKGgGR0CMjCdGy5ZsaAdN6ANoCEdArcLe0gKWs3V9lChoBkdAjpMWxyGSIWgHTegDaAhHQK3DLbVz6rN1fZQoaAZHQI5G0wlByCFoB03oA2gIR0Ct0qNwJgLJdX2UKGgGR0COZDuVHFxXaAdN6ANoCEdArdOZlMAWBXV9lChoBkdAj3bqB/Zuh2gHTegDaAhHQK3TwU5dWyV1fZQoaAZHQI/W0b5uZThoB03oA2gIR0Ct1Az7l7tzdX2UKGgGR0CPhwVv/BFeaAdN6ANoCEdArd9bamGdqnV9lChoBkdAkDSetSydF2gHTegDaAhHQK3gX4Hooux1fZQoaAZHQI6sjSNOuaFoB03oA2gIR0Ct4IWphnandX2UKGgGR0CLqcB3iaRZaAdN6ANoCEdAreDUm8dxQ3V9lChoBkdAjZMFSS/0umgHTegDaAhHQK3wtDu0CzV1fZQoaAZHQIoUVqYZ2p1oB03oA2gIR0Ct8aj0cwQEdX2UKGgGR0COZg9W6shgaAdN6ANoCEdArfHQNEw353V9lChoBkdAjWxBaC+UQmgHTegDaAhHQK3yHFUADJV1fZQoaAZHQI6K6sKb8WNoB03oA2gIR0Ct/V/yGzrvdX2UKGgGR0CPoHiExqO+aAdN6ANoCEdArf5W0svqT3V9lChoBkdAjlLe4Cp3o2gHTegDaAhHQK3+gViWmgt1fZQoaAZHQI5Om/+KjztoB03oA2gIR0Ct/s0lRgqmdX2UKGgGR0CO9vDKoybhaAdN6ANoCEdArg21bLU1AXV9lChoBkdAjpYa0x/NJWgHTegDaAhHQK4PQ+HrQgN1fZQoaAZHQJDCR1zQu29oB03oA2gIR0CuD2nzH0btdX2UKGgGR0CLqO6q814xaAdN6ANoCEdArg+2vwEyL3V9lChoBkdAjnVKOtGNJmgHTegDaAhHQK4bPbmEGqx1fZQoaAZHQIkFTyrgflpoB03oA2gIR0CuHDoUi6g/dX2UKGgGR0CPlBwYtQKsaAdN6ANoCEdArhxfDgqEvnV9lChoBkdAjIKkZaV2R2gHTegDaAhHQK4crQ66reZ1fZQoaAZHQI78qu2Zy+9oB03oA2gIR0CuKrUkGA09dX2UKGgGR0COx5RekYXPaAdN6ANoCEdArixNnEl3QnV9lChoBkdAjq/34bjtHGgHTegDaAhHQK4sjMHryDt1fZQoaAZHQI6+kcS5AhVoB03oA2gIR0CuLRXwkPc0dX2UKGgGR0CO094bCJoCaAdN6ANoCEdArjjNkOI683V9lChoBkdAjt7jsdDIBGgHTegDaAhHQK45wDvmYBx1fZQoaAZHQI55Q1aW5YpoB03oA2gIR0CuOeZqubI+dX2UKGgGR0CPIkBiCrcTaAdN6ANoCEdArjo4UzsQd3V9lChoBkdAkBIDK9wm3WgHTegDaAhHQK5HcWoFV1h1fZQoaAZHQI5NWzF+/g1oB03oA2gIR0CuSQovrWy1dX2UKGgGR0COfO+fRNRFaAdN6ANoCEdArklJ/d69kHV9lChoBkdAkDoZ8Sf16GgHTegDaAhHQK5Jxu63AmB1fZQoaAZHQIxaU7dSEUVoB03oA2gIR0CuVsEJSiuddX2UKGgGR0CQGXLnLaEjaAdN6ANoCEdArle08aGYbHV9lChoBkdAj3eSf+S8rmgHTegDaAhHQK5X20UoKD11fZQoaAZHQJAfGPsAvL5oB03oA2gIR0CuWCf1YhdMdX2UKGgGR0CPj7FR51NhaAdN6ANoCEdArmSRdfLLZHV9lChoBkdAkB8+P3i71GgHTegDaAhHQK5mBQk5ZKZ1fZQoaAZHQIu1wsRQJoloB03oA2gIR0CuZkdZRsMzdX2UKGgGR0CQccHbh3qzaAdN6ANoCEdArmbDFwT/Q3V9lChoBkdAjCNTqB3A22gHTegDaAhHQK50gE6kqMF1fZQoaAZHQIvjHYODrZ9oB03oA2gIR0CudXdWyTpxdX2UKGgGR0CPNOdU83dcaAdN6ANoCEdArnWd58jRlnV9lChoBkdAj2jUzsQd0mgHTegDaAhHQK519lJ6IFh1fZQoaAZHQI9V3VEuxr1oB03oA2gIR0CugXCZF5OadX2UKGgGR0CNgs619fCzaAdN6ANoCEdAroLrDl5nlHV9lChoBkdAkIHcnNPgvWgHTegDaAhHQK6DJA1Nxlx1fZQoaAZHQIufgyqMm4RoB03oA2gIR0Cug5G6f8MvdX2UKGgGR0CPofKODJ2daAdN6ANoCEdArpI+iJwbVHV9lChoBkdAjfs32VVxTGgHTegDaAhHQK6TNnZCfHx1fZQoaAZHQI4E6fthNM5oB03oA2gIR0Cuk1vHLidbdX2UKGgGR0CODOaz/p+uaAdN6ANoCEdArpOmys0YTHV9lChoBkdAj8wRsVLzw2gHTegDaAhHQK6e8A5Jbt91fZQoaAZHQI9e6yB06o5oB03oA2gIR0Cun/iWVu76dX2UKGgGR0CN8lXAdn01aAdN6ANoCEdArqA0i8nNPnV9lChoBkdAjyZTM7lq8GgHTegDaAhHQK6grbs4T9N1fZQoaAZHQJAi/xtpEhJoB03oA2gIR0CusBdMK1G9dX2UKGgGR0CPLifNiYsvaAdN6ANoCEdArrEOXw9aEHV9lChoBkdAhkDOTibUgGgHTegDaAhHQK6xNl2/zrh1fZQoaAZHQI+/Kdz4k/toB03oA2gIR0CusYZIpYs/dX2UKGgGR0CPAQWBz3h5aAdN6ANoCEdArrzTS3LFGXV9lChoBkdAj0V9hRZU1mgHTegDaAhHQK69zc+JP691fZQoaAZHQIvmGE0zj3poB03oA2gIR0CuvfPsqrimdX2UKGgGR0CQG+ZCv5gxaAdN6ANoCEdArr49liBoVXV9lChoBkdAj4EdvjwQUmgHTegDaAhHQK7N6XaakRB1fZQoaAZHQI17zZnL7oBoB03oA2gIR0CuzubdBSk1dX2UKGgGR0CHSnxPO6d2aAdN6ANoCEdArs8LNB4UvnV9lChoBkdAjzuzreIl+mgHTegDaAhHQK7PU1n/T9d1fZQoaAZHQIozTrNW2gFoB03oA2gIR0Cu2tutfXwtdX2UKGgGR0CPQkBg/keZaAdN6ANoCEdArtvP8/D+BHV9lChoBkdAj6CBMi8nNWgHTegDaAhHQK7b9wQ176Z1fZQoaAZHQIZb/d43WFxoB03oA2gIR0Cu3EJIMBp6dX2UKGgGR0CO5WRjjJdTaAdN6ANoCEdAruu9IuoP1HV9lChoBkdAjl3E9+w1SGgHTegDaAhHQK7ss052hZh1fZQoaAZHQIaGBjx0+1VoB03oA2gIR0Cu7NkxREWqdX2UKGgGR0COT4GGEf1ZaAdN6ANoCEdAru0pMvh60XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (342 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1033.940808108449, "std_reward": 46.09182611154372, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T22:38:33.943593"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ef35be017a7e8f2e6550ef69d6b54793b73cf925c4ce1da300e9876b3229662
3
+ size 2136