anhnct commited on
Commit
eb2ef3d
·
verified ·
1 Parent(s): cd5f4eb

Upload model

Browse files
Files changed (2) hide show
  1. config.json +6 -2
  2. configuration_vits.py +258 -0
config.json CHANGED
@@ -1,10 +1,14 @@
1
  {
2
- "_name_or_path": "ljspeech_vits_istft",
3
  "activation_dropout": 0.1,
4
  "architectures": [
5
  "VitsModel"
6
  ],
7
  "attention_dropout": 0.1,
 
 
 
 
8
  "depth_separable_channels": 2,
9
  "depth_separable_num_layers": 3,
10
  "duration_predictor_dropout": 0.5,
@@ -63,7 +67,7 @@
63
  "spectrogram_bins": 513,
64
  "subbands": null,
65
  "torch_dtype": "float32",
66
- "transformers_version": "4.47.0.dev0",
67
  "upsample_initial_channel": 512,
68
  "upsample_kernel_sizes": [
69
  16,
 
1
  {
2
+ "_name_or_path": "/home/anhnct8/transformers/ljspeech_vits_istft",
3
  "activation_dropout": 0.1,
4
  "architectures": [
5
  "VitsModel"
6
  ],
7
  "attention_dropout": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_vits.VitsConfig",
10
+ "AutoModel": "modeling_vits.VitsModel"
11
+ },
12
  "depth_separable_channels": 2,
13
  "depth_separable_num_layers": 3,
14
  "duration_predictor_dropout": 0.5,
 
67
  "spectrogram_bins": 513,
68
  "subbands": null,
69
  "torch_dtype": "float32",
70
+ "transformers_version": "4.47.1",
71
  "upsample_initial_channel": 512,
72
  "upsample_kernel_sizes": [
73
  16,
configuration_vits.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """VITS model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class VitsConfig(PretrainedConfig):
25
+ r"""
26
+ This is the configuration class to store the configuration of a [`VitsModel`]. It is used to instantiate a VITS
27
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
28
+ defaults will yield a similar configuration to that of the VITS
29
+ [facebook/mms-tts-eng](https://huggingface.co/facebook/mms-tts-eng) architecture.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+ Args:
35
+ vocab_size (`int`, *optional*, defaults to 38):
36
+ Vocabulary size of the VITS model. Defines the number of different tokens that can be represented by the
37
+ `inputs_ids` passed to the forward method of [`VitsModel`].
38
+ hidden_size (`int`, *optional*, defaults to 192):
39
+ Dimensionality of the text encoder layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 6):
41
+ Number of hidden layers in the Transformer encoder.
42
+ num_attention_heads (`int`, *optional*, defaults to 2):
43
+ Number of attention heads for each attention layer in the Transformer encoder.
44
+ window_size (`int`, *optional*, defaults to 4):
45
+ Window size for the relative positional embeddings in the attention layers of the Transformer encoder.
46
+ use_bias (`bool`, *optional*, defaults to `True`):
47
+ Whether to use bias in the key, query, value projection layers in the Transformer encoder.
48
+ ffn_dim (`int`, *optional*, defaults to 768):
49
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
50
+ layerdrop (`float`, *optional*, defaults to 0.1):
51
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
52
+ for more details.
53
+ ffn_kernel_size (`int`, *optional*, defaults to 3):
54
+ Kernel size of the 1D convolution layers used by the feed-forward network in the Transformer encoder.
55
+ flow_size (`int`, *optional*, defaults to 192):
56
+ Dimensionality of the flow layers.
57
+ spectrogram_bins (`int`, *optional*, defaults to 513):
58
+ Number of frequency bins in the target spectrogram.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
60
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
61
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
62
+ hidden_dropout (`float`, *optional*, defaults to 0.1):
63
+ The dropout probability for all fully connected layers in the embeddings and encoder.
64
+ attention_dropout (`float`, *optional*, defaults to 0.1):
65
+ The dropout ratio for the attention probabilities.
66
+ activation_dropout (`float`, *optional*, defaults to 0.1):
67
+ The dropout ratio for activations inside the fully connected layer.
68
+ initializer_range (`float`, *optional*, defaults to 0.02):
69
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
70
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
71
+ The epsilon used by the layer normalization layers.
72
+ use_stochastic_duration_prediction (`bool`, *optional*, defaults to `True`):
73
+ Whether to use the stochastic duration prediction module or the regular duration predictor.
74
+ num_speakers (`int`, *optional*, defaults to 1):
75
+ Number of speakers if this is a multi-speaker model.
76
+ speaker_embedding_size (`int`, *optional*, defaults to 0):
77
+ Number of channels used by the speaker embeddings. Is zero for single-speaker models.
78
+ upsample_initial_channel (`int`, *optional*, defaults to 512):
79
+ The number of input channels into the HiFi-GAN upsampling network.
80
+ upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`):
81
+ A tuple of integers defining the stride of each 1D convolutional layer in the HiFi-GAN upsampling network.
82
+ The length of `upsample_rates` defines the number of convolutional layers and has to match the length of
83
+ `upsample_kernel_sizes`.
84
+ upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`):
85
+ A tuple of integers defining the kernel size of each 1D convolutional layer in the HiFi-GAN upsampling
86
+ network. The length of `upsample_kernel_sizes` defines the number of convolutional layers and has to match
87
+ the length of `upsample_rates`.
88
+ resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
89
+ A tuple of integers defining the kernel sizes of the 1D convolutional layers in the HiFi-GAN
90
+ multi-receptive field fusion (MRF) module.
91
+ resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
92
+ A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
93
+ HiFi-GAN multi-receptive field fusion (MRF) module.
94
+ leaky_relu_slope (`float`, *optional*, defaults to 0.1):
95
+ The angle of the negative slope used by the leaky ReLU activation.
96
+ depth_separable_channels (`int`, *optional*, defaults to 2):
97
+ Number of channels to use in each depth-separable block.
98
+ depth_separable_num_layers (`int`, *optional*, defaults to 3):
99
+ Number of convolutional layers to use in each depth-separable block.
100
+ duration_predictor_flow_bins (`int`, *optional*, defaults to 10):
101
+ Number of channels to map using the unonstrained rational spline in the duration predictor model.
102
+ duration_predictor_tail_bound (`float`, *optional*, defaults to 5.0):
103
+ Value of the tail bin boundary when computing the unconstrained rational spline in the duration predictor
104
+ model.
105
+ duration_predictor_kernel_size (`int`, *optional*, defaults to 3):
106
+ Kernel size of the 1D convolution layers used in the duration predictor model.
107
+ duration_predictor_dropout (`float`, *optional*, defaults to 0.5):
108
+ The dropout ratio for the duration predictor model.
109
+ duration_predictor_num_flows (`int`, *optional*, defaults to 4):
110
+ Number of flow stages used by the duration predictor model.
111
+ duration_predictor_filter_channels (`int`, *optional*, defaults to 256):
112
+ Number of channels for the convolution layers used in the duration predictor model.
113
+ prior_encoder_num_flows (`int`, *optional*, defaults to 4):
114
+ Number of flow stages used by the prior encoder flow model.
115
+ prior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 4):
116
+ Number of WaveNet layers used by the prior encoder flow model.
117
+ posterior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 16):
118
+ Number of WaveNet layers used by the posterior encoder model.
119
+ wavenet_kernel_size (`int`, *optional*, defaults to 5):
120
+ Kernel size of the 1D convolution layers used in the WaveNet model.
121
+ wavenet_dilation_rate (`int`, *optional*, defaults to 1):
122
+ Dilation rates of the dilated 1D convolutional layers used in the WaveNet model.
123
+ wavenet_dropout (`float`, *optional*, defaults to 0.0):
124
+ The dropout ratio for the WaveNet layers.
125
+ speaking_rate (`float`, *optional*, defaults to 1.0):
126
+ Speaking rate. Larger values give faster synthesised speech.
127
+ noise_scale (`float`, *optional*, defaults to 0.667):
128
+ How random the speech prediction is. Larger values create more variation in the predicted speech.
129
+ noise_scale_duration (`float`, *optional*, defaults to 0.8):
130
+ How random the duration prediction is. Larger values create more variation in the predicted durations.
131
+ sampling_rate (`int`, *optional*, defaults to 16000):
132
+ The sampling rate at which the output audio waveform is digitalized expressed in hertz (Hz).
133
+
134
+ Example:
135
+
136
+ ```python
137
+ >>> from transformers import VitsModel, VitsConfig
138
+
139
+ >>> # Initializing a "facebook/mms-tts-eng" style configuration
140
+ >>> configuration = VitsConfig()
141
+
142
+ >>> # Initializing a model (with random weights) from the "facebook/mms-tts-eng" style configuration
143
+ >>> model = VitsModel(configuration)
144
+
145
+ >>> # Accessing the model configuration
146
+ >>> configuration = model.config
147
+ ```"""
148
+
149
+ model_type = "vits"
150
+
151
+ def __init__(
152
+ self,
153
+ vocab_size=38,
154
+ hidden_size=192,
155
+ num_hidden_layers=6,
156
+ num_attention_heads=2,
157
+ window_size=4,
158
+ use_bias=True,
159
+ ffn_dim=768,
160
+ layerdrop=0.1,
161
+ ffn_kernel_size=3,
162
+ flow_size=192,
163
+ spectrogram_bins=513,
164
+ hidden_act="relu",
165
+ hidden_dropout=0.1,
166
+ attention_dropout=0.1,
167
+ activation_dropout=0.1,
168
+ initializer_range=0.02,
169
+ layer_norm_eps=1e-5,
170
+ use_stochastic_duration_prediction=True,
171
+ num_speakers=1,
172
+ speaker_embedding_size=0,
173
+ upsample_initial_channel=512,
174
+ upsample_rates=[8, 8, 2, 2],
175
+ upsample_kernel_sizes=[16, 16, 4, 4],
176
+ resblock_kernel_sizes=[3, 7, 11],
177
+ resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
178
+ leaky_relu_slope=0.1,
179
+ depth_separable_channels=2,
180
+ depth_separable_num_layers=3,
181
+ duration_predictor_flow_bins=10,
182
+ duration_predictor_tail_bound=5.0,
183
+ duration_predictor_kernel_size=3,
184
+ duration_predictor_dropout=0.5,
185
+ duration_predictor_num_flows=4,
186
+ duration_predictor_filter_channels=256,
187
+ prior_encoder_num_flows=4,
188
+ prior_encoder_num_wavenet_layers=4,
189
+ posterior_encoder_num_wavenet_layers=16,
190
+ wavenet_kernel_size=5,
191
+ wavenet_dilation_rate=1,
192
+ wavenet_dropout=0.0,
193
+ speaking_rate=1.0,
194
+ noise_scale=0.667,
195
+ noise_scale_duration=0.8,
196
+ sampling_rate=16_000,
197
+ istft_decoder=None,
198
+ subbands=None,
199
+ gen_istft_n_fft=None,
200
+ gen_istft_hop_size=None,
201
+ **kwargs,
202
+ ):
203
+ self.vocab_size = vocab_size
204
+ self.hidden_size = hidden_size
205
+ self.num_hidden_layers = num_hidden_layers
206
+ self.num_attention_heads = num_attention_heads
207
+ self.window_size = window_size
208
+ self.use_bias = use_bias
209
+ self.ffn_dim = ffn_dim
210
+ self.layerdrop = layerdrop
211
+ self.ffn_kernel_size = ffn_kernel_size
212
+ self.flow_size = flow_size
213
+ self.spectrogram_bins = spectrogram_bins
214
+ self.hidden_act = hidden_act
215
+ self.hidden_dropout = hidden_dropout
216
+ self.attention_dropout = attention_dropout
217
+ self.activation_dropout = activation_dropout
218
+ self.initializer_range = initializer_range
219
+ self.layer_norm_eps = layer_norm_eps
220
+ self.use_stochastic_duration_prediction = use_stochastic_duration_prediction
221
+ self.num_speakers = num_speakers
222
+ self.speaker_embedding_size = speaker_embedding_size
223
+ self.upsample_initial_channel = upsample_initial_channel
224
+ self.upsample_rates = upsample_rates
225
+ self.upsample_kernel_sizes = upsample_kernel_sizes
226
+ self.resblock_kernel_sizes = resblock_kernel_sizes
227
+ self.resblock_dilation_sizes = resblock_dilation_sizes
228
+ self.leaky_relu_slope = leaky_relu_slope
229
+ self.depth_separable_channels = depth_separable_channels
230
+ self.depth_separable_num_layers = depth_separable_num_layers
231
+ self.duration_predictor_flow_bins = duration_predictor_flow_bins
232
+ self.duration_predictor_tail_bound = duration_predictor_tail_bound
233
+ self.duration_predictor_kernel_size = duration_predictor_kernel_size
234
+ self.duration_predictor_dropout = duration_predictor_dropout
235
+ self.duration_predictor_num_flows = duration_predictor_num_flows
236
+ self.duration_predictor_filter_channels = duration_predictor_filter_channels
237
+ self.prior_encoder_num_flows = prior_encoder_num_flows
238
+ self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers
239
+ self.posterior_encoder_num_wavenet_layers = posterior_encoder_num_wavenet_layers
240
+ self.wavenet_kernel_size = wavenet_kernel_size
241
+ self.wavenet_dilation_rate = wavenet_dilation_rate
242
+ self.wavenet_dropout = wavenet_dropout
243
+ self.speaking_rate = speaking_rate
244
+ self.noise_scale = noise_scale
245
+ self.noise_scale_duration = noise_scale_duration
246
+ self.sampling_rate = sampling_rate
247
+ self.istft_decoder = istft_decoder
248
+ self.subbands = subbands
249
+ self.gen_istft_n_fft = gen_istft_n_fft
250
+ self.gen_istft_hop_size = gen_istft_hop_size
251
+
252
+ if len(upsample_kernel_sizes) != len(upsample_rates):
253
+ raise ValueError(
254
+ f"The length of `upsample_kernel_sizes` ({len(upsample_kernel_sizes)}) must match the length of "
255
+ f"`upsample_rates` ({len(upsample_rates)})"
256
+ )
257
+
258
+ super().__init__(**kwargs)