File size: 2,004 Bytes
71fa188
 
 
 
bbf1af7
 
 
 
71fa188
 
bbf1af7
 
 
 
 
 
 
 
 
 
 
 
 
 
71fa188
 
 
 
 
 
 
bbf1af7
 
 
 
71fa188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf1af7
 
 
 
 
 
 
 
 
 
 
71fa188
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: alzheimer_model_aug_deit5
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9996875
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# alzheimer_model_aug_deit5

This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0012
- Accuracy: 0.9997

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 1234
- gradient_accumulation_steps: 10
- total_train_batch_size: 160
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5045        | 1.0   | 212  | 0.1414          | 0.9522   |
| 0.0779        | 2.0   | 424  | 0.0222          | 0.9961   |
| 0.0156        | 3.0   | 637  | 0.0164          | 0.9941   |
| 0.0032        | 4.0   | 849  | 0.0044          | 0.9983   |
| 0.0004        | 4.99  | 1060 | 0.0012          | 0.9997   |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3