File size: 6,169 Bytes
cac8fe7 ab12a97 cac8fe7 0cc4ecd ab12a97 cac8fe7 ab12a97 cac8fe7 ab12a97 cac8fe7 ab12a97 cac8fe7 ab12a97 cac8fe7 ab12a97 cac8fe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import random
from argparse import ArgumentParser
import torch
from torch.utils.data import DataLoader
from torch.optim import Adafactor
from torch.amp import autocast
from torch.cuda import is_available as cuda_is_available, is_bf16_supported
from torch.utils.data import random_split
from torchmetrics.text import Perplexity
from model import GPT, GPTWithLoRA
from data import Alpaca
import tiktoken
from tqdm import tqdm
def main():
parser = ArgumentParser(description="Instruction-tune the GPT.")
parser.add_argument("--base_model_path", default="./out/checkpoint.pt", type=str)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--gradient_accumulation_steps", default=128, type=int)
parser.add_argument("--learning_rate", default=5e-4, type=float)
parser.add_argument("--rms_decay", default=-0.8, type=float)
parser.add_argument("--optimizer_low_memory", default=True, type=bool)
parser.add_argument("--mask_input", default=False, type=bool)
parser.add_argument("--num_epochs", default=4, type=int)
parser.add_argument("--rank", default=8, type=int)
parser.add_argument("--alpha", default=1.0, type=float)
parser.add_argument("--dropout", default=0.05, type=float)
parser.add_argument("--activation_checkpointing", action="store_true")
parser.add_argument("--eval_interval", default=1, type=int)
parser.add_argument("--checkpoint_interval", default=1, type=int)
parser.add_argument(
"--checkpoint_path", default="./out/lora_instruction.pt", type=str
)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--seed", default=None, type=int)
args = parser.parse_args()
if "cuda" in args.device and not cuda_is_available():
raise RuntimeError("Cuda is not available.")
torch.set_float32_matmul_precision("high")
dtype = (
torch.bfloat16
if "cuda" in args.device and is_bf16_supported()
else torch.float32
)
forward_context = autocast(device_type=args.device, dtype=dtype)
if args.seed:
torch.manual_seed(args.seed)
random.seed(args.seed)
checkpoint = torch.load(
args.base_model_path, map_location=args.device, weights_only=True
)
model_args = checkpoint["model_args"]
tokenizer = tiktoken.get_encoding(checkpoint["token_encoding"])
dataset = Alpaca(
tokenizer,
max_tokens_per_sample=model_args["block_size"],
mask_input=args.mask_input,
)
training, testing = random_split(dataset, (0.9, 0.1))
train_loader = DataLoader(
training,
collate_fn=dataset.collate,
batch_size=args.batch_size,
pin_memory="cpu" not in args.device,
shuffle=True,
)
test_loader = DataLoader(
testing,
collate_fn=dataset.collate,
batch_size=args.batch_size,
pin_memory="cpu" not in args.device,
shuffle=False,
)
model = GPT(**model_args, activation_checkpointing=args.activation_checkpointing)
model = torch.compile(model)
model.load_state_dict(checkpoint["model"])
print("Model checkpoint loaded")
lora_args = {
"rank": args.rank,
"alpha": args.alpha,
"dropout": args.dropout,
}
model = GPTWithLoRA(model, **lora_args).to(args.device)
print("Compiling model")
model.compile()
optimizer = Adafactor(
model.parameters(),
lr=args.learning_rate,
beta2_decay=args.rms_decay,
foreach=not args.optimizer_low_memory,
)
starting_epoch = 1
if args.resume:
checkpoint = torch.load(
args.checkpoint_path, map_location=args.device, weights_only=True
)
model.load_state_dict(checkpoint["lora"], strict=False)
optimizer.load_state_dict(checkpoint["optimizer"])
starting_epoch += checkpoint["epoch"]
print("Previous checkpoint resumed successfully")
model.train()
print(f"Model has {model.num_trainable_params:,} trainable parameters")
perplexity_metric = Perplexity(ignore_index=dataset.PADDING_INDEX).to(args.device)
print("Instruction-tuning ...")
for epoch in range(starting_epoch, args.num_epochs + 1):
total_cross_entropy, total_batches = 0.0, 0
for step, (x, y) in enumerate(
tqdm(train_loader, desc=f"Epoch {epoch}", leave=False), start=1
):
x = x.to(args.device, non_blocking=True)
y = y.to(args.device, non_blocking=True)
with forward_context:
y_pred, loss = model(x, y)
scaled_loss = loss / args.gradient_accumulation_steps
scaled_loss.backward()
total_cross_entropy += loss.item()
if step % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
total_batches += 1
average_cross_entropy = total_cross_entropy / total_batches
print(
f"Epoch {epoch}: Cross Entropy: {average_cross_entropy:.5f}",
)
if epoch % args.eval_interval == 0:
model.eval()
for x, y in tqdm(test_loader, desc="Testing", leave=False):
x = x.to(args.device, non_blocking=True)
y = y.to(args.device, non_blocking=True)
with torch.no_grad():
y_pred, _ = model(x)
perplexity_metric.update(y_pred, y)
perplexity = perplexity_metric.compute()
print(f"Perplexity: {perplexity:.3f}")
perplexity_metric.reset()
model.train()
if epoch % args.checkpoint_interval == 0:
checkpoint = {
"epoch": epoch,
"lora_args": lora_args,
"lora": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
torch.save(checkpoint, args.checkpoint_path)
print("Checkpoint saved")
print("Done!")
if __name__ == "__main__":
main()
|