--- base_model: - meta-llama/Meta-Llama-3-8B-Instruct - DeepMount00/Llama-3-8b-Ita - swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA library_name: transformers tags: - mergekit - merge license: llama3 language: - it --- # Llama-3-8b-ita-ties-pro This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). I tried to merge two of the best Italian LLMs using Mergekit. The results are acceptable, but I could not improve on the best existing model. ## Evaluation For a detailed comparison of model performance, check out the [Leaderboard for Italian Language Models](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard). Here's a breakdown of the performance metrics: | Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average | |:----------------------------|:----------------------|:----------------|:---------------------|:--------| | **Accuracy Normalized** | 0.6967 | 0.5646 | 0.5717 | 0.6110 | ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) * [swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA](https://huggingface.co/swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: meta-llama/Meta-Llama-3-8B-Instruct # no parameters necessary for base model - model: swap-uniba/LLaMAntino-3-ANITA-8B-Inst-DPO-ITA parameters: density: 0.7 weight: 0.6 - model: DeepMount00/Llama-3-8b-Ita parameters: density: 0.7 weight: 0.3 merge_method: ties base_model: meta-llama/Meta-Llama-3-8B-Instruct parameters: normalize: true dtype: bfloat16 ```