File size: 6,565 Bytes
ece2db0
5c6d024
 
 
e27350e
 
 
5c6d024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece2db0
e27350e
5e9fe79
e27350e
5e9fe79
5c6d024
 
 
 
 
 
e27350e
5c6d024
e27350e
5c6d024
e27350e
5c6d024
e27350e
5c6d024
e27350e
4344670
5c6d024
 
 
e27350e
 
 
 
 
 
5c6d024
e27350e
5c6d024
e27350e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6d024
 
e27350e
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6d024
 
 
 
 
 
 
e27350e
 
 
5c6d024
e27350e
5c6d024
 
e27350e
5c6d024
e27350e
5c6d024
 
 
 
e27350e
 
5c6d024
 
 
 
 
 
 
 
e27350e
5c6d024
 
 
 
 
 
 
e27350e
5c6d024
 
 
 
 
 
 
 
 
 
 
 
 
 
e27350e
5c6d024
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
language:
- pt
thumbnail: Portuguese BERT for the Legal Domain
tags:
- sentence-transformers
- transformers
- bert
- pytorch
- sentence-similarity
license: mit
pipeline_tag: sentence-similarity
datasets:
- stjiris/portuguese-legal-sentences-v0
- assin
- assin2
- stsb_multi_mt
- stjiris/IRIS_sts
widget:
- source_sentence: "O advogado apresentou as provas ao juíz."
  sentences:
    - "O juíz leu as provas."
    - "O juíz leu o recurso."
    - "O juíz atirou uma pedra."
model-index:
- name: BERTimbau
  results:
  - task:
      name: STS
      type: STS
    metrics:
      - name: Pearson Correlation - assin Dataset
        type: Pearson Correlation
        value: 0.7763420633772975
      - name: Pearson Correlation - assin2 Dataset
        type: Pearson Correlation
        value: 0.8067374216274927
      - name: Pearson Correlation - stsb_multi_mt pt Dataset
        type: Pearson Correlation
        value: 0.8388993109077857
      - name: Pearson Correlation - IRIS STS Dataset
        type: Pearson Correlation
        value: 0.7931353381814285
---

[![INESC-ID](https://www.inesc-id.pt/wp-content/uploads/2019/06/INESC-ID-logo_01.png)](https://www.inesc-id.pt/projects/PR07005/)

[![A Semantic Search System for Supremo Tribunal de Justiça](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/_static/logo.png)](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/)

Work developed as part of [Project IRIS](https://www.inesc-id.pt/projects/PR07005/).

Thesis: [A Semantic Search System for Supremo Tribunal de Justiça](https://rufimelo99.github.io/SemanticSearchSystemForSTJ/)

# stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v1 (Legal BERTimbau)
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
stjiris/bert-large-portuguese-cased-legal-tsdae derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.

It was trained using the TSDAE technique with a learning rate 1e-5 [Legal Sentences from +-30000 documents](https://huggingface.co/datasets/stjiris/portuguese-legal-sentences-v1.0) 212k training steps (best performance for our semantic search system implementation)

It was presented to Generative Pseudo Labeling training.

The model was presented to NLI data. 16 batch size,  2e-5 lr

It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2), [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt)  and  [IRIS STS](https://huggingface.co/datasets/stjiris/IRIS_sts) datasets. 'lr': 1e-5

## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]

model = SentenceTransformer('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v1')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v1')
model = AutoModel.from_pretrained('stjiris/bert-large-portuguese-cased-legal-tsdae-gpl-nli-sts-v1')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1028, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```



## Citing & Authors

### Contributions
[@rufimelo99](https://github.com/rufimelo99)

If you use this work, please cite:

```bibtex
@inproceedings{MeloSemantic,
	author = {Melo, Rui and Santos, Professor Pedro Alexandre and Dias, Professor Jo{\~ a}o},
	title = {A {Semantic} {Search} {System} for {Supremo} {Tribunal} de {Justi}{\c c}a},
}

@inproceedings{souza2020bertimbau,
  author    = {F{\'a}bio Souza and
               Rodrigo Nogueira and
               Roberto Lotufo},
  title     = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
  booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
  year      = {2020}
}

@inproceedings{fonseca2016assin,
  title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
  author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
  booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
  pages={13--15},
  year={2016}
}

@inproceedings{real2020assin,
  title={The assin 2 shared task: a quick overview},
  author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
  booktitle={International Conference on Computational Processing of the Portuguese Language},
  pages={406--412},
  year={2020},
  organization={Springer}
}
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}

```