Update README.md
Browse files
README.md
CHANGED
@@ -23,12 +23,12 @@ You can use this model directly using the AutoModelForSeq2SeqLM class.
|
|
23 |
>>> input_str = "[TGT] stocks dropped 42% while Samsung rallied."
|
24 |
>>> input = tokenizer(input_str, return_tensors='pt')
|
25 |
>>> output = model.generate(**input, max_length=20)
|
26 |
-
>>> print(output)
|
27 |
The sentiment for [TGT] in the given sentence is NEGATIVE.
|
28 |
>>> input_str = "Tesla stocks dropped 42% while [TGT] rallied."
|
29 |
>>> input = tokenizer(input_str, return_tensors='pt')
|
30 |
>>> output = model.generate(**input, max_length=20)
|
31 |
-
>>> print(output)
|
32 |
The sentiment for [TGT] in the given sentence is POSITIVE.
|
33 |
```
|
34 |
## Evaluation Results
|
|
|
23 |
>>> input_str = "[TGT] stocks dropped 42% while Samsung rallied."
|
24 |
>>> input = tokenizer(input_str, return_tensors='pt')
|
25 |
>>> output = model.generate(**input, max_length=20)
|
26 |
+
>>> print(tokenizer.decode(output[0]))
|
27 |
The sentiment for [TGT] in the given sentence is NEGATIVE.
|
28 |
>>> input_str = "Tesla stocks dropped 42% while [TGT] rallied."
|
29 |
>>> input = tokenizer(input_str, return_tensors='pt')
|
30 |
>>> output = model.generate(**input, max_length=20)
|
31 |
+
>>> print(tokenizer.decode(output[0]))
|
32 |
The sentiment for [TGT] in the given sentence is POSITIVE.
|
33 |
```
|
34 |
## Evaluation Results
|