--- license: mit datasets: - amphion/Emilia-Dataset language: - en - zh - ko - ja - fr - de base_model: - amphion/MaskGCT pipeline_tag: text-to-speech --- ## MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer [![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co/amphion/maskgct) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co/spaces/amphion/maskgct) [![readme](https://img.shields.io/badge/README-Key%20Features-blue)](https://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct) ## Quickstart **Clone and install** ```bash git clone https://github.com/open-mmlab/Amphion.git # create env bash ./models/tts/maskgct/env.sh ``` **Model download** We provide the following pretrained checkpoints: | Model Name | Description | |-------------------|-------------| | [Acoustic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. | | [Semantic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. | | [MaskGCT-T2S](https://huggingface.co/amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. | | [MaskGCT-S2A](https://huggingface.co/amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. | You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co/amphion/MaskGCT/tree/main) or use huggingface api. ```python from huggingface_hub import hf_hub_download # download semantic codec ckpt semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors") # download acoustic codec ckpt codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors") codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors") # download t2s model ckpt t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors") # download s2a model ckpt s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors") s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors") ``` **Basic Usage** You can use the following code to generate speech from text and a prompt speech. ```python from models.tts.maskgct.maskgct_utils import * from huggingface_hub import hf_hub_download import safetensors import soundfile as sf if __name__ == "__main__": # build model device = torch.device("cuda:0") cfg_path = "./models/tts/maskgct/config/maskgct.json" cfg = load_config(cfg_path) # 1. build semantic model (w2v-bert-2.0) semantic_model, semantic_mean, semantic_std = build_semantic_model(device) # 2. build semantic codec semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device) # 3. build acoustic codec codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device) # 4. build t2s model t2s_model = build_t2s_model(cfg.model.t2s_model, device) # 5. build s2a model s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device) s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device) # download checkpoint ... # load semantic codec safetensors.torch.load_model(semantic_codec, semantic_code_ckpt) # load acoustic codec safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt) safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt) # load t2s model safetensors.torch.load_model(t2s_model, t2s_model_ckpt) # load s2a model safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt) safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt) # inference prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav" save_path = "[YOUR SAVE PATH]" prompt_text = " We do not break. We never give in. We never back down." target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision." # Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration. target_len = 18 recovered_audio = maskgct_inference(prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len) sf.write(save_path, recovered_audio, 24000) ```