--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_10 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9375490966221524 - name: Precision type: precision value: 0.9451238954076366 --- # swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_10 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.9375 - F1 Score: 0.9383 - Precision: 0.9451 - Sensitivity: 0.9381 - Specificity: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 100 - eval_batch_size: 100 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | Sensitivity | Specificity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:-----------:|:-----------:| | 1.3428 | 0.99 | 19 | 0.7059 | 0.7467 | 0.7535 | 0.7951 | 0.7464 | 0.9332 | | 0.3308 | 1.97 | 38 | 0.2314 | 0.9183 | 0.9194 | 0.9239 | 0.9191 | 0.9792 | | 0.1601 | 2.96 | 57 | 0.2024 | 0.9305 | 0.9314 | 0.9349 | 0.9306 | 0.9824 | | 0.0976 | 4.0 | 77 | 0.3376 | 0.8904 | 0.8943 | 0.9126 | 0.8930 | 0.9724 | | 0.0585 | 4.99 | 96 | 0.3893 | 0.8830 | 0.8853 | 0.9115 | 0.8854 | 0.9706 | | 0.0432 | 5.97 | 115 | 0.2559 | 0.9214 | 0.9239 | 0.9330 | 0.9237 | 0.9802 | | 0.0313 | 6.96 | 134 | 0.2175 | 0.9375 | 0.9383 | 0.9451 | 0.9381 | 0.9843 | | 0.0176 | 8.0 | 154 | 0.2309 | 0.9313 | 0.9326 | 0.9386 | 0.9320 | 0.9827 | | 0.0152 | 8.99 | 173 | 0.2358 | 0.9328 | 0.9339 | 0.9416 | 0.9336 | 0.9831 | | 0.0089 | 9.87 | 190 | 0.2116 | 0.9360 | 0.9374 | 0.9437 | 0.9372 | 0.9839 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3