--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_06 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9225512528473804 - name: Precision type: precision value: 0.9214370287637926 --- # swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_06 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2384 - Accuracy: 0.9226 - F1 Score: 0.9210 - Precision: 0.9214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 100 - eval_batch_size: 100 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:| | 1.3082 | 0.98 | 13 | 0.7669 | 0.7819 | 0.7689 | 0.7723 | | 0.5415 | 1.96 | 26 | 0.3100 | 0.8867 | 0.8812 | 0.8816 | | 0.279 | 2.94 | 39 | 0.2901 | 0.8992 | 0.8967 | 0.8961 | | 0.1563 | 4.0 | 53 | 0.2655 | 0.9089 | 0.9078 | 0.9084 | | 0.1304 | 4.98 | 66 | 0.2971 | 0.8964 | 0.8935 | 0.8958 | | 0.1058 | 5.96 | 79 | 0.2358 | 0.9243 | 0.9218 | 0.9224 | | 0.0971 | 6.94 | 92 | 0.2298 | 0.9260 | 0.9245 | 0.9258 | | 0.079 | 8.0 | 106 | 0.2468 | 0.9134 | 0.9123 | 0.9125 | | 0.0638 | 8.98 | 119 | 0.2534 | 0.9112 | 0.9097 | 0.9101 | | 0.0538 | 9.81 | 130 | 0.2384 | 0.9226 | 0.9210 | 0.9214 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3