amirbachar commited on
Commit
b34b895
·
verified ·
1 Parent(s): 09fac06

Checkpoint 91770

Browse files
Files changed (3) hide show
  1. README.md +180 -54
  2. trainer_state.json +1428 -0
  3. training_args.bin +1 -1
README.md CHANGED
@@ -1,76 +1,202 @@
1
  ---
2
- license: apache-2.0
3
  library_name: peft
4
- tags:
5
- - generated_from_trainer
6
  base_model: google/flan-t5-xl
7
- model-index:
8
- - name: flan-t5-xl-spider-dict_qpl-20240304-v3
9
- results: []
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
 
15
- # flan-t5-xl-spider-dict_qpl-20240304-v3
16
 
17
- This model is a fine-tuned version of [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) on an unknown dataset.
18
- It achieves the following results on the evaluation set:
19
- - Loss: 0.0957
20
- - Execution Accuracy: 69.3424
21
 
22
- ## Model description
23
 
24
- More information needed
25
 
26
- ## Intended uses & limitations
27
 
28
- More information needed
29
 
30
- ## Training and evaluation data
31
 
32
- More information needed
33
 
34
- ## Training procedure
 
 
 
 
 
 
35
 
36
- ### Training hyperparameters
37
 
38
- The following hyperparameters were used during training:
39
- - learning_rate: 0.0002
40
- - train_batch_size: 1
41
- - eval_batch_size: 8
42
- - seed: 1
43
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
- - lr_scheduler_type: linear
45
- - num_epochs: 17
46
 
47
- ### Training results
 
 
48
 
49
- | Training Loss | Epoch | Step | Execution Accuracy | Validation Loss |
50
- |:-------------:|:-----:|:------:|:------------------:|:---------------:|
51
- | 0.068 | 1.0 | 6555 | 39.4584 | 0.0767 |
52
- | 0.0432 | 2.0 | 13110 | 52.9981 | 0.0608 |
53
- | 0.033 | 3.0 | 19665 | 60.3482 | 0.0612 |
54
- | 0.0297 | 4.0 | 26220 | 62.8627 | 0.0589 |
55
- | 0.0213 | 5.0 | 32775 | 64.1199 | 0.0605 |
56
- | 0.0188 | 6.0 | 39330 | 64.3133 | 0.0619 |
57
- | 0.0166 | 7.0 | 45885 | 66.441 | 0.0611 |
58
- | 0.0162 | 8.0 | 52440 | 65.8607 | 0.0669 |
59
- | 0.0109 | 9.0 | 58995 | 68.9555 | 0.0666 |
60
- | 0.0101 | 10.0 | 65550 | 68.1818 | 0.0736 |
61
- | 0.0085 | 11.0 | 72105 | 68.0851 | 0.0764 |
62
- | 0.0069 | 12.0 | 78660 | 69.0522 | 0.0801 |
63
- | 0.0068 | 13.0 | 85215 | 69.2456 | 0.0884 |
64
- | 0.0052 | 14.0 | 91770 | 70.793 | 0.0883 |
65
- | 0.0039 | 15.0 | 98325 | 70.5029 | 0.0936 |
66
- | 0.005 | 16.0 | 104880 | 67.9884 | 0.0904 |
67
- | 0.0042 | 17.0 | 111435 | 0.0957 | 69.3424 |
68
 
 
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  ### Framework versions
71
 
72
- - PEFT 0.9.0
73
- - Transformers 4.38.2
74
- - Pytorch 2.1.0+cu118
75
- - Datasets 2.18.0
76
- - Tokenizers 0.15.2
 
1
  ---
 
2
  library_name: peft
 
 
3
  base_model: google/flan-t5-xl
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
 
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## Uses
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
  ### Framework versions
201
 
202
+ - PEFT 0.9.0
 
 
 
 
trainer_state.json ADDED
@@ -0,0 +1,1428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 70.793,
3
+ "best_model_checkpoint": "flan-t5-xl-spider-dict_qpl-20240304-v3/checkpoint-91770",
4
+ "epoch": 14.0,
5
+ "eval_steps": 500,
6
+ "global_step": 91770,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.08,
13
+ "grad_norm": 2.1395843029022217,
14
+ "learning_rate": 0.0001989829646580219,
15
+ "loss": 1.1111,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.15,
20
+ "grad_norm": 1.5051442384719849,
21
+ "learning_rate": 0.00019796592931604375,
22
+ "loss": 0.2196,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.23,
27
+ "grad_norm": 1.0700268745422363,
28
+ "learning_rate": 0.00019694889397406563,
29
+ "loss": 0.1653,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 0.31,
34
+ "grad_norm": 0.6627328395843506,
35
+ "learning_rate": 0.00019593185863208746,
36
+ "loss": 0.1313,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 0.38,
41
+ "grad_norm": 0.8090806603431702,
42
+ "learning_rate": 0.00019491482329010934,
43
+ "loss": 0.1141,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 0.46,
48
+ "grad_norm": 0.5775860548019409,
49
+ "learning_rate": 0.0001938977879481312,
50
+ "loss": 0.1071,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 0.53,
55
+ "grad_norm": 0.548545777797699,
56
+ "learning_rate": 0.00019288075260615308,
57
+ "loss": 0.0963,
58
+ "step": 3500
59
+ },
60
+ {
61
+ "epoch": 0.61,
62
+ "grad_norm": 0.8567075729370117,
63
+ "learning_rate": 0.00019186371726417494,
64
+ "loss": 0.0852,
65
+ "step": 4000
66
+ },
67
+ {
68
+ "epoch": 0.69,
69
+ "grad_norm": 0.2921431064605713,
70
+ "learning_rate": 0.00019084668192219682,
71
+ "loss": 0.0787,
72
+ "step": 4500
73
+ },
74
+ {
75
+ "epoch": 0.76,
76
+ "grad_norm": 0.1600842922925949,
77
+ "learning_rate": 0.00018982964658021868,
78
+ "loss": 0.0789,
79
+ "step": 5000
80
+ },
81
+ {
82
+ "epoch": 0.84,
83
+ "grad_norm": 0.48446208238601685,
84
+ "learning_rate": 0.00018881261123824053,
85
+ "loss": 0.0732,
86
+ "step": 5500
87
+ },
88
+ {
89
+ "epoch": 0.92,
90
+ "grad_norm": 0.5679713487625122,
91
+ "learning_rate": 0.0001877955758962624,
92
+ "loss": 0.0699,
93
+ "step": 6000
94
+ },
95
+ {
96
+ "epoch": 0.99,
97
+ "grad_norm": 1.3154789209365845,
98
+ "learning_rate": 0.00018677854055428427,
99
+ "loss": 0.068,
100
+ "step": 6500
101
+ },
102
+ {
103
+ "epoch": 1.0,
104
+ "eval_execution_accuracy": 39.4584,
105
+ "eval_loss": 0.0767175704240799,
106
+ "eval_runtime": 1448.6397,
107
+ "eval_samples_per_second": 0.714,
108
+ "eval_steps_per_second": 0.09,
109
+ "step": 6555
110
+ },
111
+ {
112
+ "epoch": 1.07,
113
+ "grad_norm": 0.3169132173061371,
114
+ "learning_rate": 0.00018576150521230613,
115
+ "loss": 0.0608,
116
+ "step": 7000
117
+ },
118
+ {
119
+ "epoch": 1.14,
120
+ "grad_norm": 0.5822262763977051,
121
+ "learning_rate": 0.000184744469870328,
122
+ "loss": 0.0594,
123
+ "step": 7500
124
+ },
125
+ {
126
+ "epoch": 1.22,
127
+ "grad_norm": 0.39004069566726685,
128
+ "learning_rate": 0.00018372743452834986,
129
+ "loss": 0.0601,
130
+ "step": 8000
131
+ },
132
+ {
133
+ "epoch": 1.3,
134
+ "grad_norm": 0.48953133821487427,
135
+ "learning_rate": 0.00018271039918637175,
136
+ "loss": 0.0563,
137
+ "step": 8500
138
+ },
139
+ {
140
+ "epoch": 1.37,
141
+ "grad_norm": 0.24563811719417572,
142
+ "learning_rate": 0.0001816933638443936,
143
+ "loss": 0.0547,
144
+ "step": 9000
145
+ },
146
+ {
147
+ "epoch": 1.45,
148
+ "grad_norm": 0.028272481635212898,
149
+ "learning_rate": 0.00018067632850241546,
150
+ "loss": 0.0513,
151
+ "step": 9500
152
+ },
153
+ {
154
+ "epoch": 1.53,
155
+ "grad_norm": 0.5085881948471069,
156
+ "learning_rate": 0.00017965929316043731,
157
+ "loss": 0.054,
158
+ "step": 10000
159
+ },
160
+ {
161
+ "epoch": 1.6,
162
+ "grad_norm": 0.3579294681549072,
163
+ "learning_rate": 0.0001786422578184592,
164
+ "loss": 0.0523,
165
+ "step": 10500
166
+ },
167
+ {
168
+ "epoch": 1.68,
169
+ "grad_norm": 0.717029869556427,
170
+ "learning_rate": 0.00017762522247648105,
171
+ "loss": 0.048,
172
+ "step": 11000
173
+ },
174
+ {
175
+ "epoch": 1.75,
176
+ "grad_norm": 0.5166067481040955,
177
+ "learning_rate": 0.00017660818713450294,
178
+ "loss": 0.0494,
179
+ "step": 11500
180
+ },
181
+ {
182
+ "epoch": 1.83,
183
+ "grad_norm": 0.7487884759902954,
184
+ "learning_rate": 0.0001755911517925248,
185
+ "loss": 0.0444,
186
+ "step": 12000
187
+ },
188
+ {
189
+ "epoch": 1.91,
190
+ "grad_norm": 0.24778613448143005,
191
+ "learning_rate": 0.00017457411645054667,
192
+ "loss": 0.0427,
193
+ "step": 12500
194
+ },
195
+ {
196
+ "epoch": 1.98,
197
+ "grad_norm": 0.3205878436565399,
198
+ "learning_rate": 0.00017355708110856853,
199
+ "loss": 0.0432,
200
+ "step": 13000
201
+ },
202
+ {
203
+ "epoch": 2.0,
204
+ "eval_execution_accuracy": 52.9981,
205
+ "eval_loss": 0.06084170565009117,
206
+ "eval_runtime": 1830.3328,
207
+ "eval_samples_per_second": 0.565,
208
+ "eval_steps_per_second": 0.071,
209
+ "step": 13110
210
+ },
211
+ {
212
+ "epoch": 2.06,
213
+ "grad_norm": 0.424517959356308,
214
+ "learning_rate": 0.00017254004576659039,
215
+ "loss": 0.0422,
216
+ "step": 13500
217
+ },
218
+ {
219
+ "epoch": 2.14,
220
+ "grad_norm": 0.5932648777961731,
221
+ "learning_rate": 0.00017152301042461227,
222
+ "loss": 0.0447,
223
+ "step": 14000
224
+ },
225
+ {
226
+ "epoch": 2.21,
227
+ "grad_norm": 0.1377120316028595,
228
+ "learning_rate": 0.00017050597508263412,
229
+ "loss": 0.0399,
230
+ "step": 14500
231
+ },
232
+ {
233
+ "epoch": 2.29,
234
+ "grad_norm": 0.257429301738739,
235
+ "learning_rate": 0.000169488939740656,
236
+ "loss": 0.0361,
237
+ "step": 15000
238
+ },
239
+ {
240
+ "epoch": 2.36,
241
+ "grad_norm": 0.18395432829856873,
242
+ "learning_rate": 0.00016847190439867786,
243
+ "loss": 0.038,
244
+ "step": 15500
245
+ },
246
+ {
247
+ "epoch": 2.44,
248
+ "grad_norm": 0.526056706905365,
249
+ "learning_rate": 0.00016745486905669975,
250
+ "loss": 0.0343,
251
+ "step": 16000
252
+ },
253
+ {
254
+ "epoch": 2.52,
255
+ "grad_norm": 0.17391307651996613,
256
+ "learning_rate": 0.0001664378337147216,
257
+ "loss": 0.0357,
258
+ "step": 16500
259
+ },
260
+ {
261
+ "epoch": 2.59,
262
+ "grad_norm": 0.2732052505016327,
263
+ "learning_rate": 0.00016542079837274346,
264
+ "loss": 0.0366,
265
+ "step": 17000
266
+ },
267
+ {
268
+ "epoch": 2.67,
269
+ "grad_norm": 0.3006477355957031,
270
+ "learning_rate": 0.0001644037630307653,
271
+ "loss": 0.033,
272
+ "step": 17500
273
+ },
274
+ {
275
+ "epoch": 2.75,
276
+ "grad_norm": 0.011468607001006603,
277
+ "learning_rate": 0.0001633867276887872,
278
+ "loss": 0.0335,
279
+ "step": 18000
280
+ },
281
+ {
282
+ "epoch": 2.82,
283
+ "grad_norm": 0.5990091562271118,
284
+ "learning_rate": 0.00016236969234680905,
285
+ "loss": 0.0355,
286
+ "step": 18500
287
+ },
288
+ {
289
+ "epoch": 2.9,
290
+ "grad_norm": 0.29567310214042664,
291
+ "learning_rate": 0.00016135265700483093,
292
+ "loss": 0.0337,
293
+ "step": 19000
294
+ },
295
+ {
296
+ "epoch": 2.97,
297
+ "grad_norm": 0.006056224461644888,
298
+ "learning_rate": 0.0001603356216628528,
299
+ "loss": 0.033,
300
+ "step": 19500
301
+ },
302
+ {
303
+ "epoch": 3.0,
304
+ "eval_execution_accuracy": 60.3482,
305
+ "eval_loss": 0.06122712045907974,
306
+ "eval_runtime": 1764.8897,
307
+ "eval_samples_per_second": 0.586,
308
+ "eval_steps_per_second": 0.074,
309
+ "step": 19665
310
+ },
311
+ {
312
+ "epoch": 3.05,
313
+ "grad_norm": 0.30340930819511414,
314
+ "learning_rate": 0.00015931858632087467,
315
+ "loss": 0.0297,
316
+ "step": 20000
317
+ },
318
+ {
319
+ "epoch": 3.13,
320
+ "grad_norm": 0.017457757145166397,
321
+ "learning_rate": 0.00015830155097889653,
322
+ "loss": 0.0305,
323
+ "step": 20500
324
+ },
325
+ {
326
+ "epoch": 3.2,
327
+ "grad_norm": 0.254963755607605,
328
+ "learning_rate": 0.00015728451563691838,
329
+ "loss": 0.028,
330
+ "step": 21000
331
+ },
332
+ {
333
+ "epoch": 3.28,
334
+ "grad_norm": 0.8444741368293762,
335
+ "learning_rate": 0.00015626748029494024,
336
+ "loss": 0.027,
337
+ "step": 21500
338
+ },
339
+ {
340
+ "epoch": 3.36,
341
+ "grad_norm": 0.47470298409461975,
342
+ "learning_rate": 0.00015525044495296212,
343
+ "loss": 0.0297,
344
+ "step": 22000
345
+ },
346
+ {
347
+ "epoch": 3.43,
348
+ "grad_norm": 0.08465476334095001,
349
+ "learning_rate": 0.00015423340961098398,
350
+ "loss": 0.0288,
351
+ "step": 22500
352
+ },
353
+ {
354
+ "epoch": 3.51,
355
+ "grad_norm": 0.32479336857795715,
356
+ "learning_rate": 0.00015321637426900586,
357
+ "loss": 0.0302,
358
+ "step": 23000
359
+ },
360
+ {
361
+ "epoch": 3.59,
362
+ "grad_norm": 3.906116008758545,
363
+ "learning_rate": 0.00015219933892702772,
364
+ "loss": 0.0297,
365
+ "step": 23500
366
+ },
367
+ {
368
+ "epoch": 3.66,
369
+ "grad_norm": 0.821506917476654,
370
+ "learning_rate": 0.0001511823035850496,
371
+ "loss": 0.0266,
372
+ "step": 24000
373
+ },
374
+ {
375
+ "epoch": 3.74,
376
+ "grad_norm": 0.36568546295166016,
377
+ "learning_rate": 0.00015016526824307146,
378
+ "loss": 0.0296,
379
+ "step": 24500
380
+ },
381
+ {
382
+ "epoch": 3.81,
383
+ "grad_norm": 0.6190164089202881,
384
+ "learning_rate": 0.0001491482329010933,
385
+ "loss": 0.0287,
386
+ "step": 25000
387
+ },
388
+ {
389
+ "epoch": 3.89,
390
+ "grad_norm": 0.2852056920528412,
391
+ "learning_rate": 0.00014813119755911517,
392
+ "loss": 0.0271,
393
+ "step": 25500
394
+ },
395
+ {
396
+ "epoch": 3.97,
397
+ "grad_norm": 0.10050356388092041,
398
+ "learning_rate": 0.00014711416221713705,
399
+ "loss": 0.0297,
400
+ "step": 26000
401
+ },
402
+ {
403
+ "epoch": 4.0,
404
+ "eval_execution_accuracy": 62.8627,
405
+ "eval_loss": 0.0589316301047802,
406
+ "eval_runtime": 1802.5956,
407
+ "eval_samples_per_second": 0.574,
408
+ "eval_steps_per_second": 0.072,
409
+ "step": 26220
410
+ },
411
+ {
412
+ "epoch": 4.04,
413
+ "grad_norm": 0.4248579740524292,
414
+ "learning_rate": 0.00014609712687515893,
415
+ "loss": 0.027,
416
+ "step": 26500
417
+ },
418
+ {
419
+ "epoch": 4.12,
420
+ "grad_norm": 0.5822145342826843,
421
+ "learning_rate": 0.0001450800915331808,
422
+ "loss": 0.0234,
423
+ "step": 27000
424
+ },
425
+ {
426
+ "epoch": 4.2,
427
+ "grad_norm": 0.028582902625203133,
428
+ "learning_rate": 0.00014406305619120267,
429
+ "loss": 0.0256,
430
+ "step": 27500
431
+ },
432
+ {
433
+ "epoch": 4.27,
434
+ "grad_norm": 0.026179086416959763,
435
+ "learning_rate": 0.00014304602084922453,
436
+ "loss": 0.0248,
437
+ "step": 28000
438
+ },
439
+ {
440
+ "epoch": 4.35,
441
+ "grad_norm": 0.24167686700820923,
442
+ "learning_rate": 0.00014202898550724638,
443
+ "loss": 0.024,
444
+ "step": 28500
445
+ },
446
+ {
447
+ "epoch": 4.42,
448
+ "grad_norm": 0.21196796000003815,
449
+ "learning_rate": 0.00014101195016526824,
450
+ "loss": 0.0232,
451
+ "step": 29000
452
+ },
453
+ {
454
+ "epoch": 4.5,
455
+ "grad_norm": 0.1384715437889099,
456
+ "learning_rate": 0.00013999491482329012,
457
+ "loss": 0.0231,
458
+ "step": 29500
459
+ },
460
+ {
461
+ "epoch": 4.58,
462
+ "grad_norm": 0.25323405861854553,
463
+ "learning_rate": 0.00013897787948131198,
464
+ "loss": 0.0227,
465
+ "step": 30000
466
+ },
467
+ {
468
+ "epoch": 4.65,
469
+ "grad_norm": 0.17340293526649475,
470
+ "learning_rate": 0.00013796084413933386,
471
+ "loss": 0.0232,
472
+ "step": 30500
473
+ },
474
+ {
475
+ "epoch": 4.73,
476
+ "grad_norm": 0.01007129717618227,
477
+ "learning_rate": 0.00013694380879735572,
478
+ "loss": 0.0212,
479
+ "step": 31000
480
+ },
481
+ {
482
+ "epoch": 4.81,
483
+ "grad_norm": 0.5236365795135498,
484
+ "learning_rate": 0.0001359267734553776,
485
+ "loss": 0.0233,
486
+ "step": 31500
487
+ },
488
+ {
489
+ "epoch": 4.88,
490
+ "grad_norm": 0.49340179562568665,
491
+ "learning_rate": 0.00013490973811339945,
492
+ "loss": 0.0258,
493
+ "step": 32000
494
+ },
495
+ {
496
+ "epoch": 4.96,
497
+ "grad_norm": 0.7839340567588806,
498
+ "learning_rate": 0.0001338927027714213,
499
+ "loss": 0.0213,
500
+ "step": 32500
501
+ },
502
+ {
503
+ "epoch": 5.0,
504
+ "eval_execution_accuracy": 64.1199,
505
+ "eval_loss": 0.06054983288049698,
506
+ "eval_runtime": 1797.3766,
507
+ "eval_samples_per_second": 0.575,
508
+ "eval_steps_per_second": 0.072,
509
+ "step": 32775
510
+ },
511
+ {
512
+ "epoch": 5.03,
513
+ "grad_norm": 0.47601643204689026,
514
+ "learning_rate": 0.00013287566742944317,
515
+ "loss": 0.0198,
516
+ "step": 33000
517
+ },
518
+ {
519
+ "epoch": 5.11,
520
+ "grad_norm": 0.3969705402851105,
521
+ "learning_rate": 0.00013185863208746505,
522
+ "loss": 0.0201,
523
+ "step": 33500
524
+ },
525
+ {
526
+ "epoch": 5.19,
527
+ "grad_norm": 0.06148134917020798,
528
+ "learning_rate": 0.0001308415967454869,
529
+ "loss": 0.021,
530
+ "step": 34000
531
+ },
532
+ {
533
+ "epoch": 5.26,
534
+ "grad_norm": 0.0021157702431082726,
535
+ "learning_rate": 0.0001298245614035088,
536
+ "loss": 0.0189,
537
+ "step": 34500
538
+ },
539
+ {
540
+ "epoch": 5.34,
541
+ "grad_norm": 0.09957286715507507,
542
+ "learning_rate": 0.00012880752606153064,
543
+ "loss": 0.0214,
544
+ "step": 35000
545
+ },
546
+ {
547
+ "epoch": 5.42,
548
+ "grad_norm": 0.0950658768415451,
549
+ "learning_rate": 0.00012779049071955253,
550
+ "loss": 0.0206,
551
+ "step": 35500
552
+ },
553
+ {
554
+ "epoch": 5.49,
555
+ "grad_norm": 0.5534018874168396,
556
+ "learning_rate": 0.00012677345537757438,
557
+ "loss": 0.0182,
558
+ "step": 36000
559
+ },
560
+ {
561
+ "epoch": 5.57,
562
+ "grad_norm": 0.21119213104248047,
563
+ "learning_rate": 0.00012575642003559624,
564
+ "loss": 0.0195,
565
+ "step": 36500
566
+ },
567
+ {
568
+ "epoch": 5.64,
569
+ "grad_norm": 0.10089027881622314,
570
+ "learning_rate": 0.0001247393846936181,
571
+ "loss": 0.0196,
572
+ "step": 37000
573
+ },
574
+ {
575
+ "epoch": 5.72,
576
+ "grad_norm": 0.36528435349464417,
577
+ "learning_rate": 0.00012372234935163998,
578
+ "loss": 0.0187,
579
+ "step": 37500
580
+ },
581
+ {
582
+ "epoch": 5.8,
583
+ "grad_norm": 0.13980288803577423,
584
+ "learning_rate": 0.00012270531400966183,
585
+ "loss": 0.0177,
586
+ "step": 38000
587
+ },
588
+ {
589
+ "epoch": 5.87,
590
+ "grad_norm": 0.03852877765893936,
591
+ "learning_rate": 0.00012168827866768371,
592
+ "loss": 0.0219,
593
+ "step": 38500
594
+ },
595
+ {
596
+ "epoch": 5.95,
597
+ "grad_norm": 0.23849190771579742,
598
+ "learning_rate": 0.00012067124332570557,
599
+ "loss": 0.0188,
600
+ "step": 39000
601
+ },
602
+ {
603
+ "epoch": 6.0,
604
+ "eval_execution_accuracy": 64.3133,
605
+ "eval_loss": 0.061897873878479004,
606
+ "eval_runtime": 1866.1394,
607
+ "eval_samples_per_second": 0.554,
608
+ "eval_steps_per_second": 0.07,
609
+ "step": 39330
610
+ },
611
+ {
612
+ "epoch": 6.03,
613
+ "grad_norm": 0.6830750703811646,
614
+ "learning_rate": 0.00011965420798372744,
615
+ "loss": 0.0175,
616
+ "step": 39500
617
+ },
618
+ {
619
+ "epoch": 6.1,
620
+ "grad_norm": 0.013556591235101223,
621
+ "learning_rate": 0.00011863717264174932,
622
+ "loss": 0.0166,
623
+ "step": 40000
624
+ },
625
+ {
626
+ "epoch": 6.18,
627
+ "grad_norm": 0.06067229434847832,
628
+ "learning_rate": 0.00011762013729977118,
629
+ "loss": 0.0167,
630
+ "step": 40500
631
+ },
632
+ {
633
+ "epoch": 6.25,
634
+ "grad_norm": 0.815282940864563,
635
+ "learning_rate": 0.00011660310195779305,
636
+ "loss": 0.0179,
637
+ "step": 41000
638
+ },
639
+ {
640
+ "epoch": 6.33,
641
+ "grad_norm": 0.09995106607675552,
642
+ "learning_rate": 0.0001155860666158149,
643
+ "loss": 0.0164,
644
+ "step": 41500
645
+ },
646
+ {
647
+ "epoch": 6.41,
648
+ "grad_norm": 0.07753593474626541,
649
+ "learning_rate": 0.00011456903127383679,
650
+ "loss": 0.0162,
651
+ "step": 42000
652
+ },
653
+ {
654
+ "epoch": 6.48,
655
+ "grad_norm": 0.16108450293540955,
656
+ "learning_rate": 0.00011355199593185864,
657
+ "loss": 0.0176,
658
+ "step": 42500
659
+ },
660
+ {
661
+ "epoch": 6.56,
662
+ "grad_norm": 0.1027306616306305,
663
+ "learning_rate": 0.00011253496058988051,
664
+ "loss": 0.0176,
665
+ "step": 43000
666
+ },
667
+ {
668
+ "epoch": 6.64,
669
+ "grad_norm": 0.527164876461029,
670
+ "learning_rate": 0.00011151792524790237,
671
+ "loss": 0.0148,
672
+ "step": 43500
673
+ },
674
+ {
675
+ "epoch": 6.71,
676
+ "grad_norm": 0.12876121699810028,
677
+ "learning_rate": 0.00011050088990592425,
678
+ "loss": 0.016,
679
+ "step": 44000
680
+ },
681
+ {
682
+ "epoch": 6.79,
683
+ "grad_norm": 0.07147472351789474,
684
+ "learning_rate": 0.00010948385456394609,
685
+ "loss": 0.0166,
686
+ "step": 44500
687
+ },
688
+ {
689
+ "epoch": 6.86,
690
+ "grad_norm": 0.11269113421440125,
691
+ "learning_rate": 0.00010846681922196797,
692
+ "loss": 0.0159,
693
+ "step": 45000
694
+ },
695
+ {
696
+ "epoch": 6.94,
697
+ "grad_norm": 0.0018060138681903481,
698
+ "learning_rate": 0.00010744978387998983,
699
+ "loss": 0.0166,
700
+ "step": 45500
701
+ },
702
+ {
703
+ "epoch": 7.0,
704
+ "eval_execution_accuracy": 66.441,
705
+ "eval_loss": 0.06106872484087944,
706
+ "eval_runtime": 1845.4627,
707
+ "eval_samples_per_second": 0.56,
708
+ "eval_steps_per_second": 0.07,
709
+ "step": 45885
710
+ },
711
+ {
712
+ "epoch": 7.02,
713
+ "grad_norm": 0.010804968886077404,
714
+ "learning_rate": 0.00010643274853801171,
715
+ "loss": 0.0148,
716
+ "step": 46000
717
+ },
718
+ {
719
+ "epoch": 7.09,
720
+ "grad_norm": 0.014622188173234463,
721
+ "learning_rate": 0.00010541571319603355,
722
+ "loss": 0.0147,
723
+ "step": 46500
724
+ },
725
+ {
726
+ "epoch": 7.17,
727
+ "grad_norm": 0.13804876804351807,
728
+ "learning_rate": 0.00010439867785405544,
729
+ "loss": 0.015,
730
+ "step": 47000
731
+ },
732
+ {
733
+ "epoch": 7.25,
734
+ "grad_norm": 0.0409139022231102,
735
+ "learning_rate": 0.00010338164251207729,
736
+ "loss": 0.0126,
737
+ "step": 47500
738
+ },
739
+ {
740
+ "epoch": 7.32,
741
+ "grad_norm": 0.11225342750549316,
742
+ "learning_rate": 0.00010236460717009918,
743
+ "loss": 0.014,
744
+ "step": 48000
745
+ },
746
+ {
747
+ "epoch": 7.4,
748
+ "grad_norm": 0.021166274324059486,
749
+ "learning_rate": 0.00010134757182812102,
750
+ "loss": 0.0146,
751
+ "step": 48500
752
+ },
753
+ {
754
+ "epoch": 7.48,
755
+ "grad_norm": 0.2523152828216553,
756
+ "learning_rate": 0.0001003305364861429,
757
+ "loss": 0.014,
758
+ "step": 49000
759
+ },
760
+ {
761
+ "epoch": 7.55,
762
+ "grad_norm": 0.014010763727128506,
763
+ "learning_rate": 9.931350114416477e-05,
764
+ "loss": 0.0142,
765
+ "step": 49500
766
+ },
767
+ {
768
+ "epoch": 7.63,
769
+ "grad_norm": 0.3102033734321594,
770
+ "learning_rate": 9.829646580218663e-05,
771
+ "loss": 0.0131,
772
+ "step": 50000
773
+ },
774
+ {
775
+ "epoch": 7.7,
776
+ "grad_norm": 0.00048806238919496536,
777
+ "learning_rate": 9.72794304602085e-05,
778
+ "loss": 0.014,
779
+ "step": 50500
780
+ },
781
+ {
782
+ "epoch": 7.78,
783
+ "grad_norm": 1.1056194305419922,
784
+ "learning_rate": 9.626239511823036e-05,
785
+ "loss": 0.0122,
786
+ "step": 51000
787
+ },
788
+ {
789
+ "epoch": 7.86,
790
+ "grad_norm": 0.07580041885375977,
791
+ "learning_rate": 9.524535977625223e-05,
792
+ "loss": 0.0118,
793
+ "step": 51500
794
+ },
795
+ {
796
+ "epoch": 7.93,
797
+ "grad_norm": 0.06150615215301514,
798
+ "learning_rate": 9.422832443427409e-05,
799
+ "loss": 0.0162,
800
+ "step": 52000
801
+ },
802
+ {
803
+ "epoch": 8.0,
804
+ "eval_execution_accuracy": 65.8607,
805
+ "eval_loss": 0.0669085830450058,
806
+ "eval_runtime": 1870.6797,
807
+ "eval_samples_per_second": 0.553,
808
+ "eval_steps_per_second": 0.069,
809
+ "step": 52440
810
+ },
811
+ {
812
+ "epoch": 8.01,
813
+ "grad_norm": 0.3560275733470917,
814
+ "learning_rate": 9.321128909229596e-05,
815
+ "loss": 0.0137,
816
+ "step": 52500
817
+ },
818
+ {
819
+ "epoch": 8.09,
820
+ "grad_norm": 0.0782669186592102,
821
+ "learning_rate": 9.219425375031783e-05,
822
+ "loss": 0.0114,
823
+ "step": 53000
824
+ },
825
+ {
826
+ "epoch": 8.16,
827
+ "grad_norm": 0.008491788990795612,
828
+ "learning_rate": 9.11772184083397e-05,
829
+ "loss": 0.0124,
830
+ "step": 53500
831
+ },
832
+ {
833
+ "epoch": 8.24,
834
+ "grad_norm": 0.1824067234992981,
835
+ "learning_rate": 9.016018306636155e-05,
836
+ "loss": 0.0122,
837
+ "step": 54000
838
+ },
839
+ {
840
+ "epoch": 8.31,
841
+ "grad_norm": 0.1216733381152153,
842
+ "learning_rate": 8.914314772438342e-05,
843
+ "loss": 0.0124,
844
+ "step": 54500
845
+ },
846
+ {
847
+ "epoch": 8.39,
848
+ "grad_norm": 0.4382436275482178,
849
+ "learning_rate": 8.812611238240529e-05,
850
+ "loss": 0.0115,
851
+ "step": 55000
852
+ },
853
+ {
854
+ "epoch": 8.47,
855
+ "grad_norm": 0.35070136189460754,
856
+ "learning_rate": 8.710907704042716e-05,
857
+ "loss": 0.0111,
858
+ "step": 55500
859
+ },
860
+ {
861
+ "epoch": 8.54,
862
+ "grad_norm": 0.03633696213364601,
863
+ "learning_rate": 8.609204169844902e-05,
864
+ "loss": 0.0111,
865
+ "step": 56000
866
+ },
867
+ {
868
+ "epoch": 8.62,
869
+ "grad_norm": 0.05109800025820732,
870
+ "learning_rate": 8.507500635647089e-05,
871
+ "loss": 0.0129,
872
+ "step": 56500
873
+ },
874
+ {
875
+ "epoch": 8.7,
876
+ "grad_norm": 0.02394057996571064,
877
+ "learning_rate": 8.405797101449276e-05,
878
+ "loss": 0.012,
879
+ "step": 57000
880
+ },
881
+ {
882
+ "epoch": 8.77,
883
+ "grad_norm": 0.5572072863578796,
884
+ "learning_rate": 8.304093567251462e-05,
885
+ "loss": 0.0121,
886
+ "step": 57500
887
+ },
888
+ {
889
+ "epoch": 8.85,
890
+ "grad_norm": 0.10420696437358856,
891
+ "learning_rate": 8.202390033053648e-05,
892
+ "loss": 0.0113,
893
+ "step": 58000
894
+ },
895
+ {
896
+ "epoch": 8.92,
897
+ "grad_norm": 0.14662973582744598,
898
+ "learning_rate": 8.100686498855835e-05,
899
+ "loss": 0.0109,
900
+ "step": 58500
901
+ },
902
+ {
903
+ "epoch": 9.0,
904
+ "eval_execution_accuracy": 68.9555,
905
+ "eval_loss": 0.06655910611152649,
906
+ "eval_runtime": 1868.1909,
907
+ "eval_samples_per_second": 0.553,
908
+ "eval_steps_per_second": 0.07,
909
+ "step": 58995
910
+ },
911
+ {
912
+ "epoch": 9.0,
913
+ "grad_norm": 0.44341155886650085,
914
+ "learning_rate": 7.998982964658023e-05,
915
+ "loss": 0.0117,
916
+ "step": 59000
917
+ },
918
+ {
919
+ "epoch": 9.08,
920
+ "grad_norm": 0.07052640616893768,
921
+ "learning_rate": 7.897279430460209e-05,
922
+ "loss": 0.0109,
923
+ "step": 59500
924
+ },
925
+ {
926
+ "epoch": 9.15,
927
+ "grad_norm": 0.22480645775794983,
928
+ "learning_rate": 7.795575896262396e-05,
929
+ "loss": 0.0095,
930
+ "step": 60000
931
+ },
932
+ {
933
+ "epoch": 9.23,
934
+ "grad_norm": 0.3521146774291992,
935
+ "learning_rate": 7.693872362064583e-05,
936
+ "loss": 0.0105,
937
+ "step": 60500
938
+ },
939
+ {
940
+ "epoch": 9.31,
941
+ "grad_norm": 0.17205676436424255,
942
+ "learning_rate": 7.59216882786677e-05,
943
+ "loss": 0.0099,
944
+ "step": 61000
945
+ },
946
+ {
947
+ "epoch": 9.38,
948
+ "grad_norm": 0.018218664452433586,
949
+ "learning_rate": 7.490465293668955e-05,
950
+ "loss": 0.01,
951
+ "step": 61500
952
+ },
953
+ {
954
+ "epoch": 9.46,
955
+ "grad_norm": 0.0007620451506227255,
956
+ "learning_rate": 7.388761759471142e-05,
957
+ "loss": 0.0097,
958
+ "step": 62000
959
+ },
960
+ {
961
+ "epoch": 9.53,
962
+ "grad_norm": 0.12471388280391693,
963
+ "learning_rate": 7.287058225273329e-05,
964
+ "loss": 0.0102,
965
+ "step": 62500
966
+ },
967
+ {
968
+ "epoch": 9.61,
969
+ "grad_norm": 0.0011848780559375882,
970
+ "learning_rate": 7.185354691075516e-05,
971
+ "loss": 0.0093,
972
+ "step": 63000
973
+ },
974
+ {
975
+ "epoch": 9.69,
976
+ "grad_norm": 0.32076504826545715,
977
+ "learning_rate": 7.083651156877702e-05,
978
+ "loss": 0.0096,
979
+ "step": 63500
980
+ },
981
+ {
982
+ "epoch": 9.76,
983
+ "grad_norm": 1.0963212251663208,
984
+ "learning_rate": 6.981947622679888e-05,
985
+ "loss": 0.0103,
986
+ "step": 64000
987
+ },
988
+ {
989
+ "epoch": 9.84,
990
+ "grad_norm": 0.2559475004673004,
991
+ "learning_rate": 6.880244088482075e-05,
992
+ "loss": 0.011,
993
+ "step": 64500
994
+ },
995
+ {
996
+ "epoch": 9.92,
997
+ "grad_norm": 0.1217416375875473,
998
+ "learning_rate": 6.778540554284262e-05,
999
+ "loss": 0.0092,
1000
+ "step": 65000
1001
+ },
1002
+ {
1003
+ "epoch": 9.99,
1004
+ "grad_norm": 0.004103431012481451,
1005
+ "learning_rate": 6.676837020086448e-05,
1006
+ "loss": 0.0101,
1007
+ "step": 65500
1008
+ },
1009
+ {
1010
+ "epoch": 10.0,
1011
+ "eval_execution_accuracy": 68.1818,
1012
+ "eval_loss": 0.07360666990280151,
1013
+ "eval_runtime": 1900.7634,
1014
+ "eval_samples_per_second": 0.544,
1015
+ "eval_steps_per_second": 0.068,
1016
+ "step": 65550
1017
+ },
1018
+ {
1019
+ "epoch": 10.07,
1020
+ "grad_norm": 0.13344629108905792,
1021
+ "learning_rate": 6.575133485888635e-05,
1022
+ "loss": 0.0092,
1023
+ "step": 66000
1024
+ },
1025
+ {
1026
+ "epoch": 10.14,
1027
+ "grad_norm": 0.0032061520032584667,
1028
+ "learning_rate": 6.473429951690822e-05,
1029
+ "loss": 0.0081,
1030
+ "step": 66500
1031
+ },
1032
+ {
1033
+ "epoch": 10.22,
1034
+ "grad_norm": 0.21120476722717285,
1035
+ "learning_rate": 6.371726417493009e-05,
1036
+ "loss": 0.0086,
1037
+ "step": 67000
1038
+ },
1039
+ {
1040
+ "epoch": 10.3,
1041
+ "grad_norm": 0.00848371535539627,
1042
+ "learning_rate": 6.270022883295194e-05,
1043
+ "loss": 0.0081,
1044
+ "step": 67500
1045
+ },
1046
+ {
1047
+ "epoch": 10.37,
1048
+ "grad_norm": 0.0012110616080462933,
1049
+ "learning_rate": 6.168319349097381e-05,
1050
+ "loss": 0.0085,
1051
+ "step": 68000
1052
+ },
1053
+ {
1054
+ "epoch": 10.45,
1055
+ "grad_norm": 0.05799203738570213,
1056
+ "learning_rate": 6.066615814899568e-05,
1057
+ "loss": 0.0078,
1058
+ "step": 68500
1059
+ },
1060
+ {
1061
+ "epoch": 10.53,
1062
+ "grad_norm": 0.03763442113995552,
1063
+ "learning_rate": 5.9649122807017544e-05,
1064
+ "loss": 0.008,
1065
+ "step": 69000
1066
+ },
1067
+ {
1068
+ "epoch": 10.6,
1069
+ "grad_norm": 0.01833200454711914,
1070
+ "learning_rate": 5.8632087465039406e-05,
1071
+ "loss": 0.0089,
1072
+ "step": 69500
1073
+ },
1074
+ {
1075
+ "epoch": 10.68,
1076
+ "grad_norm": 0.27255308628082275,
1077
+ "learning_rate": 5.7615052123061275e-05,
1078
+ "loss": 0.0085,
1079
+ "step": 70000
1080
+ },
1081
+ {
1082
+ "epoch": 10.76,
1083
+ "grad_norm": 0.049906667321920395,
1084
+ "learning_rate": 5.659801678108314e-05,
1085
+ "loss": 0.0093,
1086
+ "step": 70500
1087
+ },
1088
+ {
1089
+ "epoch": 10.83,
1090
+ "grad_norm": 0.49261561036109924,
1091
+ "learning_rate": 5.558098143910501e-05,
1092
+ "loss": 0.0099,
1093
+ "step": 71000
1094
+ },
1095
+ {
1096
+ "epoch": 10.91,
1097
+ "grad_norm": 0.010688086971640587,
1098
+ "learning_rate": 5.456394609712687e-05,
1099
+ "loss": 0.0092,
1100
+ "step": 71500
1101
+ },
1102
+ {
1103
+ "epoch": 10.98,
1104
+ "grad_norm": 0.015557405538856983,
1105
+ "learning_rate": 5.354691075514875e-05,
1106
+ "loss": 0.0085,
1107
+ "step": 72000
1108
+ },
1109
+ {
1110
+ "epoch": 11.0,
1111
+ "eval_execution_accuracy": 68.0851,
1112
+ "eval_loss": 0.07639693468809128,
1113
+ "eval_runtime": 1996.6932,
1114
+ "eval_samples_per_second": 0.518,
1115
+ "eval_steps_per_second": 0.065,
1116
+ "step": 72105
1117
+ },
1118
+ {
1119
+ "epoch": 11.06,
1120
+ "grad_norm": 0.1298118531703949,
1121
+ "learning_rate": 5.2529875413170615e-05,
1122
+ "loss": 0.0078,
1123
+ "step": 72500
1124
+ },
1125
+ {
1126
+ "epoch": 11.14,
1127
+ "grad_norm": 0.08524327725172043,
1128
+ "learning_rate": 5.151284007119248e-05,
1129
+ "loss": 0.0085,
1130
+ "step": 73000
1131
+ },
1132
+ {
1133
+ "epoch": 11.21,
1134
+ "grad_norm": 0.1634071171283722,
1135
+ "learning_rate": 5.049580472921435e-05,
1136
+ "loss": 0.0071,
1137
+ "step": 73500
1138
+ },
1139
+ {
1140
+ "epoch": 11.29,
1141
+ "grad_norm": 0.0011399647919461131,
1142
+ "learning_rate": 4.947876938723621e-05,
1143
+ "loss": 0.0069,
1144
+ "step": 74000
1145
+ },
1146
+ {
1147
+ "epoch": 11.37,
1148
+ "grad_norm": 0.010579722002148628,
1149
+ "learning_rate": 4.846173404525807e-05,
1150
+ "loss": 0.0072,
1151
+ "step": 74500
1152
+ },
1153
+ {
1154
+ "epoch": 11.44,
1155
+ "grad_norm": 0.014801290817558765,
1156
+ "learning_rate": 4.744469870327994e-05,
1157
+ "loss": 0.0067,
1158
+ "step": 75000
1159
+ },
1160
+ {
1161
+ "epoch": 11.52,
1162
+ "grad_norm": 0.0037248600274324417,
1163
+ "learning_rate": 4.642766336130181e-05,
1164
+ "loss": 0.0075,
1165
+ "step": 75500
1166
+ },
1167
+ {
1168
+ "epoch": 11.59,
1169
+ "grad_norm": 0.00024146214127540588,
1170
+ "learning_rate": 4.541062801932367e-05,
1171
+ "loss": 0.0065,
1172
+ "step": 76000
1173
+ },
1174
+ {
1175
+ "epoch": 11.67,
1176
+ "grad_norm": 0.013673787005245686,
1177
+ "learning_rate": 4.439359267734554e-05,
1178
+ "loss": 0.0071,
1179
+ "step": 76500
1180
+ },
1181
+ {
1182
+ "epoch": 11.75,
1183
+ "grad_norm": 0.4386146366596222,
1184
+ "learning_rate": 4.3376557335367405e-05,
1185
+ "loss": 0.0073,
1186
+ "step": 77000
1187
+ },
1188
+ {
1189
+ "epoch": 11.82,
1190
+ "grad_norm": 0.011454693973064423,
1191
+ "learning_rate": 4.2359521993389274e-05,
1192
+ "loss": 0.0071,
1193
+ "step": 77500
1194
+ },
1195
+ {
1196
+ "epoch": 11.9,
1197
+ "grad_norm": 0.2784646451473236,
1198
+ "learning_rate": 4.1342486651411136e-05,
1199
+ "loss": 0.0084,
1200
+ "step": 78000
1201
+ },
1202
+ {
1203
+ "epoch": 11.98,
1204
+ "grad_norm": 0.1163712665438652,
1205
+ "learning_rate": 4.0325451309433006e-05,
1206
+ "loss": 0.0069,
1207
+ "step": 78500
1208
+ },
1209
+ {
1210
+ "epoch": 12.0,
1211
+ "eval_execution_accuracy": 69.0522,
1212
+ "eval_loss": 0.08005601912736893,
1213
+ "eval_runtime": 1886.3805,
1214
+ "eval_samples_per_second": 0.548,
1215
+ "eval_steps_per_second": 0.069,
1216
+ "step": 78660
1217
+ },
1218
+ {
1219
+ "epoch": 12.05,
1220
+ "grad_norm": 0.41248416900634766,
1221
+ "learning_rate": 3.930841596745487e-05,
1222
+ "loss": 0.007,
1223
+ "step": 79000
1224
+ },
1225
+ {
1226
+ "epoch": 12.13,
1227
+ "grad_norm": 0.38738590478897095,
1228
+ "learning_rate": 3.829138062547674e-05,
1229
+ "loss": 0.0069,
1230
+ "step": 79500
1231
+ },
1232
+ {
1233
+ "epoch": 12.2,
1234
+ "grad_norm": 0.24087974429130554,
1235
+ "learning_rate": 3.72743452834986e-05,
1236
+ "loss": 0.0057,
1237
+ "step": 80000
1238
+ },
1239
+ {
1240
+ "epoch": 12.28,
1241
+ "grad_norm": 0.18917705118656158,
1242
+ "learning_rate": 3.625730994152047e-05,
1243
+ "loss": 0.0065,
1244
+ "step": 80500
1245
+ },
1246
+ {
1247
+ "epoch": 12.36,
1248
+ "grad_norm": 0.05060713738203049,
1249
+ "learning_rate": 3.524027459954233e-05,
1250
+ "loss": 0.0054,
1251
+ "step": 81000
1252
+ },
1253
+ {
1254
+ "epoch": 12.43,
1255
+ "grad_norm": 0.07384895533323288,
1256
+ "learning_rate": 3.422323925756421e-05,
1257
+ "loss": 0.0063,
1258
+ "step": 81500
1259
+ },
1260
+ {
1261
+ "epoch": 12.51,
1262
+ "grad_norm": 0.22887946665287018,
1263
+ "learning_rate": 3.320620391558607e-05,
1264
+ "loss": 0.0057,
1265
+ "step": 82000
1266
+ },
1267
+ {
1268
+ "epoch": 12.59,
1269
+ "grad_norm": 0.2123759686946869,
1270
+ "learning_rate": 3.218916857360794e-05,
1271
+ "loss": 0.0074,
1272
+ "step": 82500
1273
+ },
1274
+ {
1275
+ "epoch": 12.66,
1276
+ "grad_norm": 0.09510879218578339,
1277
+ "learning_rate": 3.11721332316298e-05,
1278
+ "loss": 0.0056,
1279
+ "step": 83000
1280
+ },
1281
+ {
1282
+ "epoch": 12.74,
1283
+ "grad_norm": 0.00010326172196073458,
1284
+ "learning_rate": 3.0155097889651668e-05,
1285
+ "loss": 0.0058,
1286
+ "step": 83500
1287
+ },
1288
+ {
1289
+ "epoch": 12.81,
1290
+ "grad_norm": 0.37206101417541504,
1291
+ "learning_rate": 2.9138062547673534e-05,
1292
+ "loss": 0.0059,
1293
+ "step": 84000
1294
+ },
1295
+ {
1296
+ "epoch": 12.89,
1297
+ "grad_norm": 0.10882502794265747,
1298
+ "learning_rate": 2.81210272056954e-05,
1299
+ "loss": 0.0053,
1300
+ "step": 84500
1301
+ },
1302
+ {
1303
+ "epoch": 12.97,
1304
+ "grad_norm": 0.010751358233392239,
1305
+ "learning_rate": 2.7103991863717266e-05,
1306
+ "loss": 0.0068,
1307
+ "step": 85000
1308
+ },
1309
+ {
1310
+ "epoch": 13.0,
1311
+ "eval_execution_accuracy": 69.2456,
1312
+ "eval_loss": 0.0884392261505127,
1313
+ "eval_runtime": 1938.7518,
1314
+ "eval_samples_per_second": 0.533,
1315
+ "eval_steps_per_second": 0.067,
1316
+ "step": 85215
1317
+ },
1318
+ {
1319
+ "epoch": 13.04,
1320
+ "grad_norm": 0.10975372046232224,
1321
+ "learning_rate": 2.608695652173913e-05,
1322
+ "loss": 0.0057,
1323
+ "step": 85500
1324
+ },
1325
+ {
1326
+ "epoch": 13.12,
1327
+ "grad_norm": 0.0004275761893950403,
1328
+ "learning_rate": 2.5069921179760997e-05,
1329
+ "loss": 0.0048,
1330
+ "step": 86000
1331
+ },
1332
+ {
1333
+ "epoch": 13.2,
1334
+ "grad_norm": 0.3996267020702362,
1335
+ "learning_rate": 2.4052885837782867e-05,
1336
+ "loss": 0.0051,
1337
+ "step": 86500
1338
+ },
1339
+ {
1340
+ "epoch": 13.27,
1341
+ "grad_norm": 0.00662227114662528,
1342
+ "learning_rate": 2.3035850495804733e-05,
1343
+ "loss": 0.0062,
1344
+ "step": 87000
1345
+ },
1346
+ {
1347
+ "epoch": 13.35,
1348
+ "grad_norm": 0.09702113270759583,
1349
+ "learning_rate": 2.20188151538266e-05,
1350
+ "loss": 0.0051,
1351
+ "step": 87500
1352
+ },
1353
+ {
1354
+ "epoch": 13.42,
1355
+ "grad_norm": 0.0026878053322434425,
1356
+ "learning_rate": 2.100177981184846e-05,
1357
+ "loss": 0.0063,
1358
+ "step": 88000
1359
+ },
1360
+ {
1361
+ "epoch": 13.5,
1362
+ "grad_norm": 0.05382531136274338,
1363
+ "learning_rate": 1.9984744469870327e-05,
1364
+ "loss": 0.0042,
1365
+ "step": 88500
1366
+ },
1367
+ {
1368
+ "epoch": 13.58,
1369
+ "grad_norm": 0.770341157913208,
1370
+ "learning_rate": 1.8967709127892193e-05,
1371
+ "loss": 0.0052,
1372
+ "step": 89000
1373
+ },
1374
+ {
1375
+ "epoch": 13.65,
1376
+ "grad_norm": 0.00518847955390811,
1377
+ "learning_rate": 1.795067378591406e-05,
1378
+ "loss": 0.0052,
1379
+ "step": 89500
1380
+ },
1381
+ {
1382
+ "epoch": 13.73,
1383
+ "grad_norm": 0.0707794651389122,
1384
+ "learning_rate": 1.6933638443935928e-05,
1385
+ "loss": 0.0053,
1386
+ "step": 90000
1387
+ },
1388
+ {
1389
+ "epoch": 13.81,
1390
+ "grad_norm": 0.5020930767059326,
1391
+ "learning_rate": 1.5916603101957794e-05,
1392
+ "loss": 0.0057,
1393
+ "step": 90500
1394
+ },
1395
+ {
1396
+ "epoch": 13.88,
1397
+ "grad_norm": 0.11777380853891373,
1398
+ "learning_rate": 1.489956775997966e-05,
1399
+ "loss": 0.0056,
1400
+ "step": 91000
1401
+ },
1402
+ {
1403
+ "epoch": 13.96,
1404
+ "grad_norm": 0.0008695057476870716,
1405
+ "learning_rate": 1.3882532418001526e-05,
1406
+ "loss": 0.0052,
1407
+ "step": 91500
1408
+ },
1409
+ {
1410
+ "epoch": 14.0,
1411
+ "eval_execution_accuracy": 70.793,
1412
+ "eval_loss": 0.08826606720685959,
1413
+ "eval_runtime": 1858.3154,
1414
+ "eval_samples_per_second": 0.556,
1415
+ "eval_steps_per_second": 0.07,
1416
+ "step": 91770
1417
+ }
1418
+ ],
1419
+ "logging_steps": 500,
1420
+ "max_steps": 98325,
1421
+ "num_input_tokens_seen": 0,
1422
+ "num_train_epochs": 15,
1423
+ "save_steps": 500,
1424
+ "total_flos": 8.553259153863475e+17,
1425
+ "train_batch_size": 1,
1426
+ "trial_name": null,
1427
+ "trial_params": null
1428
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53b752b7955d88fc1560b2874e9682406268f9709db3ff80517479dd3f6a2edb
3
  size 5112
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dede708255d17950cd0ceacfc76f91fd3379b42a34bfdc561353a82976b8fcf6
3
  size 5112