OLMo-1B-instruct-alpaca_amc / configuration_olmo.py
amc-madalin's picture
Upload 2 files
54b6d58 verified
"""
OLMo configuration
"""
from transformers import AutoConfig, PretrainedConfig
from transformers.utils import logging
from olmo.config import ModelConfig
logger = logging.get_logger(__name__)
class OLMoConfig(PretrainedConfig):
model_type = "olmo"
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
def __init__(self, use_cache: bool = False, **kwargs):
model_config = ModelConfig()
all_kwargs = model_config.asdict()
all_kwargs.update(kwargs)
all_kwargs.update({"use_cache": use_cache})
all_kwargs.update(
{
"architectures": all_kwargs.get("architectures", ["OlmoModelForCausalLM"])
or ["OlmoModelForCausalLM"]
}
)
super().__init__(**all_kwargs)
@property
def num_attention_heads(self):
return self.n_heads
@property
def num_hidden_layers(self):
return self.n_layers
@property
def hidden_size(self):
return self.d_model
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
AutoConfig.register("olmo", OLMoConfig)