yinsong1986
commited on
Commit
·
ae1084a
1
Parent(s):
d67f72a
Update README.md
Browse files
README.md
CHANGED
@@ -10,8 +10,8 @@ MistralLite is a fine-tuned [Mistral-7B-v0.1](https://huggingface.co/mistralai/M
|
|
10 |
MistralLight evolves from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), and their similarities and differences are summarized below:
|
11 |
|Model|Fine-tuned on long contexts| Max context length| RotaryEmbedding adaptation| Sliding Window Size|
|
12 |
|----------|-------------:|------------:|-----------:|-----------:|
|
13 |
-
| Mistral-7B-v0.1 |
|
14 |
-
| MistralLite |
|
15 |
|
16 |
## Motivation of Developing MistralLite
|
17 |
|
@@ -160,7 +160,6 @@ hub = {
|
|
160 |
'HF_MODEL_ID':'amazon/MistralLite',
|
161 |
'HF_TASK':'text-generation',
|
162 |
'SM_NUM_GPUS':'1',
|
163 |
-
'HF_MODEL_QUANTIZE':'true'
|
164 |
}
|
165 |
|
166 |
model = HuggingFaceModel(
|
@@ -184,10 +183,16 @@ input_data = {
|
|
184 |
"inputs": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
|
185 |
"parameters": {
|
186 |
"do_sample": False,
|
187 |
-
"max_new_tokens":
|
|
|
|
|
|
|
|
|
|
|
188 |
}
|
189 |
}
|
190 |
-
predictor.predict(input_data)
|
|
|
191 |
```
|
192 |
or via [boto3](https://pypi.org/project/boto3/), and the example code is shown as below:
|
193 |
|
@@ -207,15 +212,17 @@ def call_endpoint(client, prompt, endpoint_name, paramters):
|
|
207 |
|
208 |
client = boto3.client("sagemaker-runtime")
|
209 |
parameters = {
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
217 |
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"
|
218 |
-
result = call_endpoint(client, prompt, endpoint_name,
|
219 |
print(result)
|
220 |
```
|
221 |
|
@@ -227,11 +234,12 @@ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggi
|
|
227 |
Example Docker parameters:
|
228 |
|
229 |
```shell
|
230 |
-
docker run -d --gpus all --shm-size 1g -p 443:80 ghcr.io/huggingface/text-generation-inference:1.1.0 \
|
231 |
--model-id amazon/MistralLite \
|
232 |
--max-input-length 8192 \
|
233 |
--max-total-tokens 16384 \
|
234 |
-
--max-batch-prefill-tokens 16384
|
|
|
235 |
```
|
236 |
|
237 |
### Perform Inference ###
|
@@ -249,9 +257,9 @@ SERVER_HOST = "localhost"
|
|
249 |
SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}"
|
250 |
tgi_client = Client(f"http://{SERVER_URL}", timeout=60)
|
251 |
|
252 |
-
def
|
253 |
random_seed=1,
|
254 |
-
max_new_tokens=
|
255 |
print_stream=True,
|
256 |
assist_role=True):
|
257 |
if (assist_role):
|
@@ -261,10 +269,10 @@ def invoke_falconlite(prompt,
|
|
261 |
prompt,
|
262 |
do_sample=False,
|
263 |
max_new_tokens=max_new_tokens,
|
264 |
-
typical_p=0.2,
|
265 |
temperature=None,
|
266 |
truncate=None,
|
267 |
seed=random_seed,
|
|
|
268 |
):
|
269 |
if hasattr(response, "token"):
|
270 |
if not response.token.special:
|
@@ -275,7 +283,7 @@ def invoke_falconlite(prompt,
|
|
275 |
return output
|
276 |
|
277 |
prompt = "What are the main challenges to support a long context for LLM?"
|
278 |
-
result =
|
279 |
```
|
280 |
|
281 |
**Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed.
|
|
|
10 |
MistralLight evolves from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), and their similarities and differences are summarized below:
|
11 |
|Model|Fine-tuned on long contexts| Max context length| RotaryEmbedding adaptation| Sliding Window Size|
|
12 |
|----------|-------------:|------------:|-----------:|-----------:|
|
13 |
+
| Mistral-7B-v0.1 | up to 8K tokens | 32K | rope_theta = 10000 | 4096 |
|
14 |
+
| MistralLite | up to 16K tokens | 32K | **rope_theta = 1000000** | **16384** |
|
15 |
|
16 |
## Motivation of Developing MistralLite
|
17 |
|
|
|
160 |
'HF_MODEL_ID':'amazon/MistralLite',
|
161 |
'HF_TASK':'text-generation',
|
162 |
'SM_NUM_GPUS':'1',
|
|
|
163 |
}
|
164 |
|
165 |
model = HuggingFaceModel(
|
|
|
183 |
"inputs": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
|
184 |
"parameters": {
|
185 |
"do_sample": False,
|
186 |
+
"max_new_tokens": 400,
|
187 |
+
"return_full_text": False,
|
188 |
+
"typical_p": 0.2,
|
189 |
+
"temperature":None,
|
190 |
+
"truncate":None,
|
191 |
+
"seed": 1,
|
192 |
}
|
193 |
}
|
194 |
+
result = predictor.predict(input_data)[0]["generated_text"]
|
195 |
+
print(result)
|
196 |
```
|
197 |
or via [boto3](https://pypi.org/project/boto3/), and the example code is shown as below:
|
198 |
|
|
|
212 |
|
213 |
client = boto3.client("sagemaker-runtime")
|
214 |
parameters = {
|
215 |
+
"do_sample": False,
|
216 |
+
"max_new_tokens": 400,
|
217 |
+
"return_full_text": False,
|
218 |
+
"typical_p": 0.2,
|
219 |
+
"temperature":None,
|
220 |
+
"truncate":None,
|
221 |
+
"seed": 1,
|
222 |
+
}
|
223 |
+
endpoint_name = "MistralLite-2023-10-16-09-45-58"
|
224 |
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"
|
225 |
+
result = call_endpoint(client, prompt, endpoint_name, parameters)
|
226 |
print(result)
|
227 |
```
|
228 |
|
|
|
234 |
Example Docker parameters:
|
235 |
|
236 |
```shell
|
237 |
+
docker run -d --gpus all --shm-size 1g -p 443:80 -v $(pwd)/models:/data ghcr.io/huggingface/text-generation-inference:1.1.0 \
|
238 |
--model-id amazon/MistralLite \
|
239 |
--max-input-length 8192 \
|
240 |
--max-total-tokens 16384 \
|
241 |
+
--max-batch-prefill-tokens 16384 \
|
242 |
+
--trust-remote-code
|
243 |
```
|
244 |
|
245 |
### Perform Inference ###
|
|
|
257 |
SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}"
|
258 |
tgi_client = Client(f"http://{SERVER_URL}", timeout=60)
|
259 |
|
260 |
+
def invoke_tgi(prompt,
|
261 |
random_seed=1,
|
262 |
+
max_new_tokens=400,
|
263 |
print_stream=True,
|
264 |
assist_role=True):
|
265 |
if (assist_role):
|
|
|
269 |
prompt,
|
270 |
do_sample=False,
|
271 |
max_new_tokens=max_new_tokens,
|
|
|
272 |
temperature=None,
|
273 |
truncate=None,
|
274 |
seed=random_seed,
|
275 |
+
typical_p=0.2,
|
276 |
):
|
277 |
if hasattr(response, "token"):
|
278 |
if not response.token.special:
|
|
|
283 |
return output
|
284 |
|
285 |
prompt = "What are the main challenges to support a long context for LLM?"
|
286 |
+
result = invoke_tgi(prompt)
|
287 |
```
|
288 |
|
289 |
**Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed.
|