yinsong1986
commited on
Commit
·
90fed38
1
Parent(s):
0ae4abd
Update README.md
Browse files
README.md
CHANGED
@@ -80,7 +80,10 @@ there were some limitations on its performance on longer context. Motivated by i
|
|
80 |
- **Model License:** Apache 2.0
|
81 |
- **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues)
|
82 |
|
83 |
-
## How to Use MistralFlite from Python Code ##
|
|
|
|
|
|
|
84 |
### Install the necessary packages
|
85 |
|
86 |
Requires: [transformers](https://pypi.org/project/transformers/) 4.34.0 or later, [flash-attn](https://pypi.org/project/flash-attn/) 2.3.1.post1 or later,
|
@@ -128,7 +131,78 @@ for seq in sequences:
|
|
128 |
<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>
|
129 |
```
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
## How to Deploy MistralFlite on Amazon SageMaker ##
|
|
|
|
|
|
|
|
|
132 |
### Install the necessary packages
|
133 |
|
134 |
Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later.
|
@@ -231,72 +305,12 @@ result = call_endpoint(client, prompt, endpoint_name, parameters)
|
|
231 |
print(result)
|
232 |
```
|
233 |
|
234 |
-
## How to Serve MistralFlite on TGI ##
|
235 |
-
|
236 |
-
### Start TGI server ###
|
237 |
-
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
|
238 |
-
|
239 |
-
Example Docker parameters:
|
240 |
-
|
241 |
-
```shell
|
242 |
-
docker run -d --gpus all --shm-size 1g -p 443:80 -v $(pwd)/models:/data ghcr.io/huggingface/text-generation-inference:1.1.0 \
|
243 |
-
--model-id amazon/MistralLite \
|
244 |
-
--max-input-length 16000 \
|
245 |
-
--max-total-tokens 16384 \
|
246 |
-
--max-batch-prefill-tokens 16384 \
|
247 |
-
--trust-remote-code
|
248 |
-
```
|
249 |
-
|
250 |
-
### Perform Inference ###
|
251 |
-
Example Python code for inference with TGI (requires `text_generation` 0.6.1 or later):
|
252 |
-
|
253 |
-
```shell
|
254 |
-
pip install text_generation==0.6.1
|
255 |
-
```
|
256 |
-
|
257 |
-
```python
|
258 |
-
from text_generation import Client
|
259 |
-
|
260 |
-
SERVER_PORT = 443
|
261 |
-
SERVER_HOST = "localhost"
|
262 |
-
SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}"
|
263 |
-
tgi_client = Client(f"http://{SERVER_URL}", timeout=60)
|
264 |
-
|
265 |
-
def invoke_tgi(prompt,
|
266 |
-
random_seed=1,
|
267 |
-
max_new_tokens=400,
|
268 |
-
print_stream=True,
|
269 |
-
assist_role=True):
|
270 |
-
if (assist_role):
|
271 |
-
prompt = f"<|prompter|>{prompt}</s><|assistant|>"
|
272 |
-
output = ""
|
273 |
-
for response in tgi_client.generate_stream(
|
274 |
-
prompt,
|
275 |
-
do_sample=False,
|
276 |
-
max_new_tokens=max_new_tokens,
|
277 |
-
return_full_text=False,
|
278 |
-
#temperature=None,
|
279 |
-
#truncate=None,
|
280 |
-
#seed=random_seed,
|
281 |
-
#typical_p=0.2,
|
282 |
-
):
|
283 |
-
if hasattr(response, "token"):
|
284 |
-
if not response.token.special:
|
285 |
-
snippet = response.token.text
|
286 |
-
output += snippet
|
287 |
-
if (print_stream):
|
288 |
-
print(snippet, end='', flush=True)
|
289 |
-
return output
|
290 |
-
|
291 |
-
prompt = "What are the main challenges to support a long context for LLM?"
|
292 |
-
result = invoke_tgi(prompt)
|
293 |
-
```
|
294 |
-
|
295 |
-
**Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed.
|
296 |
|
297 |
## How to Serve MistralFlite on vLLM ##
|
298 |
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
299 |
|
|
|
|
|
300 |
### Using vLLM as a server ###
|
301 |
When using vLLM as a server, pass the --model amazon/MistralLite parameter, for example:
|
302 |
```shell
|
|
|
80 |
- **Model License:** Apache 2.0
|
81 |
- **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues)
|
82 |
|
83 |
+
## How to Use MistralFlite from Python Code (HuggingFace transformers) ##
|
84 |
+
|
85 |
+
**Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/huggingface-transformers/example_usage.ipynb).
|
86 |
+
|
87 |
### Install the necessary packages
|
88 |
|
89 |
Requires: [transformers](https://pypi.org/project/transformers/) 4.34.0 or later, [flash-attn](https://pypi.org/project/flash-attn/) 2.3.1.post1 or later,
|
|
|
131 |
<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>
|
132 |
```
|
133 |
|
134 |
+
## How to Serve MistralFlite on TGI ##
|
135 |
+
**Important:**
|
136 |
+
- For an end-to-end example Jupyter notebook using the native TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi/example_usage.ipynb).
|
137 |
+
- If the **input context length is greater than 12K tokens**, it is recommended using a custom TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi-custom/example_usage.ipynb).
|
138 |
+
|
139 |
+
### Start TGI server ###
|
140 |
+
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
|
141 |
+
|
142 |
+
Example Docker parameters:
|
143 |
+
|
144 |
+
```shell
|
145 |
+
docker run -d --gpus all --shm-size 1g -p 443:80 -v $(pwd)/models:/data ghcr.io/huggingface/text-generation-inference:1.1.0 \
|
146 |
+
--model-id amazon/MistralLite \
|
147 |
+
--max-input-length 16000 \
|
148 |
+
--max-total-tokens 16384 \
|
149 |
+
--max-batch-prefill-tokens 16384 \
|
150 |
+
--trust-remote-code
|
151 |
+
```
|
152 |
+
|
153 |
+
### Perform Inference ###
|
154 |
+
Example Python code for inference with TGI (requires `text_generation` 0.6.1 or later):
|
155 |
+
|
156 |
+
```shell
|
157 |
+
pip install text_generation==0.6.1
|
158 |
+
```
|
159 |
+
|
160 |
+
```python
|
161 |
+
from text_generation import Client
|
162 |
+
|
163 |
+
SERVER_PORT = 443
|
164 |
+
SERVER_HOST = "localhost"
|
165 |
+
SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}"
|
166 |
+
tgi_client = Client(f"http://{SERVER_URL}", timeout=60)
|
167 |
+
|
168 |
+
def invoke_tgi(prompt,
|
169 |
+
random_seed=1,
|
170 |
+
max_new_tokens=400,
|
171 |
+
print_stream=True,
|
172 |
+
assist_role=True):
|
173 |
+
if (assist_role):
|
174 |
+
prompt = f"<|prompter|>{prompt}</s><|assistant|>"
|
175 |
+
output = ""
|
176 |
+
for response in tgi_client.generate_stream(
|
177 |
+
prompt,
|
178 |
+
do_sample=False,
|
179 |
+
max_new_tokens=max_new_tokens,
|
180 |
+
return_full_text=False,
|
181 |
+
#temperature=None,
|
182 |
+
#truncate=None,
|
183 |
+
#seed=random_seed,
|
184 |
+
#typical_p=0.2,
|
185 |
+
):
|
186 |
+
if hasattr(response, "token"):
|
187 |
+
if not response.token.special:
|
188 |
+
snippet = response.token.text
|
189 |
+
output += snippet
|
190 |
+
if (print_stream):
|
191 |
+
print(snippet, end='', flush=True)
|
192 |
+
return output
|
193 |
+
|
194 |
+
prompt = "What are the main challenges to support a long context for LLM?"
|
195 |
+
result = invoke_tgi(prompt)
|
196 |
+
```
|
197 |
+
|
198 |
+
**Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed.
|
199 |
+
|
200 |
+
|
201 |
## How to Deploy MistralFlite on Amazon SageMaker ##
|
202 |
+
**Important:**
|
203 |
+
- For an end-to-end example Jupyter notebook using the SageMaker built-in container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi/example_usage.ipynb).
|
204 |
+
- If the **input context length is greater than 12K tokens**, it is recommended using a custom docker container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi-custom/example_usage.ipynb).
|
205 |
+
|
206 |
### Install the necessary packages
|
207 |
|
208 |
Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later.
|
|
|
305 |
print(result)
|
306 |
```
|
307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
## How to Serve MistralFlite on vLLM ##
|
310 |
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
311 |
|
312 |
+
**Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/vllm/example_usage.ipynb).
|
313 |
+
|
314 |
### Using vLLM as a server ###
|
315 |
When using vLLM as a server, pass the --model amazon/MistralLite parameter, for example:
|
316 |
```shell
|