File size: 6,533 Bytes
f18c243
39e53a6
 
 
f18c243
 
 
 
 
 
 
39e53a6
 
f18c243
 
 
 
39e53a6
 
f18c243
39e53a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18c243
 
39e53a6
f18c243
929d13f
f18c243
 
 
 
 
 
929d13f
f18c243
 
39e53a6
 
 
f18c243
 
 
 
 
 
39e53a6
 
 
 
 
 
 
 
 
f18c243
 
 
 
 
 
 
 
39e53a6
f18c243
39e53a6
f18c243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39e53a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18c243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39e53a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
language:
- es
license: cc-by-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
widget:
- text: George Washington estuvo en Washington.
pipeline_tag: token-classification
base_model: PlanTL-GOB-ES/roberta-base-bne
model-index:
- name: SpanMarker with PlanTL-GOB-ES/roberta-base-bne on conll2002
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: conll2002
      type: conll2002
      split: eval
    metrics:
    - type: f1
      value: 0.871172868582195
      name: F1
    - type: precision
      value: 0.888328530259366
      name: Precision
    - type: recall
      value: 0.8546672828096118
      name: Recall
---

# SpanMarker with PlanTL-GOB-ES/roberta-base-bne on conll2002

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2002](https://huggingface.co/datasets/conll2002) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) as the underlying encoder.

## Model Details

### Model Description

- **Model Type:** SpanMarker
- **Encoder:** [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [conll2002](https://huggingface.co/datasets/conll2002)
- **Languages:** es
- **License:** cc-by-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels

| Label | Examples                                                          |
|:------|:------------------------------------------------------------------|
| LOC   | "Australia", "Victoria", "Melbourne"                              |
| MISC  | "Ley", "Ciudad", "CrimeNet"                                       |
| ORG   | "Commonwealth", "EFE", "Tribunal Supremo"                         |
| PER   | "Abogado General del Estado", "Daryl Williams", "Abogado General" |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("alvarobartt/span-marker-roberta-base-bne-conll-2002-es")
# Run inference
entities = model.predict("George Washington estuvo en Washington.")
```

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics

| Training set          | Min | Median  | Max  |
|:----------------------|:----|:--------|:-----|
| Sentence length       | 1   | 31.8052 | 1238 |
| Entities per sentence | 0   | 2.2586  | 160  |

### Training Hyperparameters

- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training Results

| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.1188 | 100  | 0.0704          | 0.0                  | 0.0               | 0.0           | 0.8608              |
| 0.2375 | 200  | 0.0279          | 0.8765               | 0.4034            | 0.5525        | 0.9025              |
| 0.3563 | 300  | 0.0158          | 0.8381               | 0.7211            | 0.7752        | 0.9524              |
| 0.4751 | 400  | 0.0134          | 0.8525               | 0.7463            | 0.7959        | 0.9576              |
| 0.5938 | 500  | 0.0130          | 0.8844               | 0.7549            | 0.8145        | 0.9560              |
| 0.7126 | 600  | 0.0119          | 0.8480               | 0.8006            | 0.8236        | 0.9650              |
| 0.8314 | 700  | 0.0098          | 0.8794               | 0.8408            | 0.8597        | 0.9695              |
| 0.9501 | 800  | 0.0091          | 0.8842               | 0.8360            | 0.8594        | 0.9722              |
| 1.0689 | 900  | 0.0093          | 0.8976               | 0.8387            | 0.8672        | 0.9698              |
| 1.1876 | 1000 | 0.0094          | 0.8880               | 0.8517            | 0.8694        | 0.9739              |
| 1.3064 | 1100 | 0.0086          | 0.8920               | 0.8530            | 0.8721        | 0.9737              |
| 1.4252 | 1200 | 0.0092          | 0.8896               | 0.8452            | 0.8668        | 0.9728              |
| 1.5439 | 1300 | 0.0094          | 0.8765               | 0.8313            | 0.8533        | 0.9720              |
| 1.6627 | 1400 | 0.0089          | 0.8805               | 0.8445            | 0.8621        | 0.9720              |
| 1.7815 | 1500 | 0.0088          | 0.8834               | 0.8581            | 0.8706        | 0.9747              |
| 1.9002 | 1600 | 0.0088          | 0.8883               | 0.8547            | 0.8712        | 0.9747              |

### Framework Versions

- Python: 3.10.12
- SpanMarker: 1.3.1.dev
- Transformers: 4.33.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.5
- Tokenizers: 0.13.3

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->