--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner_column_bert-base-NER results: [] language: - en widget: - >- india 0S0308Z8 trudeau 3000 Ravensburger Hamnoy, Lofoten of gold bestseller 620463000001 - >- other china lc waikiki mağazacilik hi̇zmetleri̇ ti̇c aş 630140000000 hilti 6204699090_BD 55L Toaster Oven with Double Glass - >- 611020000001 italy Apparel other games 9W1964Z8 debenhams guangzhou hec fashion leather co ltd --- # ner_column_bert-base-NER This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1872 - Precision: 0.7623 - Recall: 0.7753 - F1: 0.7688 - Accuracy: 0.9023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 702 | 0.6427 | 0.3025 | 0.2180 | 0.2534 | 0.7415 | | 0.9329 | 2.0 | 1404 | 0.4771 | 0.4343 | 0.3587 | 0.3929 | 0.7955 | | 0.546 | 3.0 | 2106 | 0.3983 | 0.5157 | 0.4530 | 0.4823 | 0.8242 | | 0.546 | 4.0 | 2808 | 0.3748 | 0.5089 | 0.4758 | 0.4918 | 0.8305 | | 0.4339 | 5.0 | 3510 | 0.2947 | 0.6362 | 0.6146 | 0.6252 | 0.8656 | | 0.3658 | 6.0 | 4212 | 0.2818 | 0.6421 | 0.6231 | 0.6325 | 0.8664 | | 0.3658 | 7.0 | 4914 | 0.2459 | 0.7108 | 0.6983 | 0.7045 | 0.8834 | | 0.3221 | 8.0 | 5616 | 0.2665 | 0.6586 | 0.6404 | 0.6494 | 0.8701 | | 0.2914 | 9.0 | 6318 | 0.2449 | 0.6880 | 0.6768 | 0.6823 | 0.8793 | | 0.2657 | 10.0 | 7020 | 0.2411 | 0.7014 | 0.6862 | 0.6937 | 0.8824 | | 0.2657 | 11.0 | 7722 | 0.2179 | 0.7261 | 0.7228 | 0.7244 | 0.8902 | | 0.2453 | 12.0 | 8424 | 0.2301 | 0.6922 | 0.6919 | 0.6920 | 0.8858 | | 0.2295 | 13.0 | 9126 | 0.2352 | 0.6768 | 0.6836 | 0.6802 | 0.8832 | | 0.2295 | 14.0 | 9828 | 0.2020 | 0.7545 | 0.7499 | 0.7522 | 0.8970 | | 0.2155 | 15.0 | 10530 | 0.2012 | 0.7449 | 0.7508 | 0.7478 | 0.8974 | | 0.2064 | 16.0 | 11232 | 0.2036 | 0.7282 | 0.7402 | 0.7341 | 0.8960 | | 0.2064 | 17.0 | 11934 | 0.1976 | 0.7390 | 0.7496 | 0.7443 | 0.8974 | | 0.1978 | 18.0 | 12636 | 0.1859 | 0.7688 | 0.7828 | 0.7757 | 0.9040 | | 0.1895 | 19.0 | 13338 | 0.1917 | 0.7574 | 0.7691 | 0.7632 | 0.9014 | | 0.186 | 20.0 | 14040 | 0.1872 | 0.7623 | 0.7753 | 0.7688 | 0.9023 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cu116 - Datasets 2.13.2 - Tokenizers 0.13.3