Text Generation
Transformers
Safetensors
English
llama
conversational
text-generation-inference
Inference Endpoints
hamishivi commited on
Commit
75da40b
·
verified ·
1 Parent(s): 882dc10

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: tulu-v2.5-dpo-13b-uf-mean
4
+ results: []
5
+ datasets:
6
+ - HuggingFaceH4/ultrafeedback_binarized
7
+ - allenai/tulu-v2-sft-mixture
8
+ language:
9
+ - en
10
+ base_model: meta-llama/Llama-2-13b-hf
11
+ license: apache-2.0
12
+ ---
13
+
14
+
15
+ TODO: banner flag/logo
16
+
17
+ # Model Card for Tulu V2.5 DPO 13B - UltraFeedback Mean
18
+
19
+ Tulu is a series of language models that are trained to act as helpful assistants.
20
+ Tulu V2.5 is a series of models trained using DPO and PPO starting from the [Tulu 2 suite](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101).
21
+ This model is trained on UltraFeedback, using the average of the finegrained scores to determine chosen and rejected.
22
+
23
+ For more details, read the paper:
24
+ [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://link.todo).
25
+
26
+
27
+ ## .Model description
28
+
29
+ - **Model type:** One model belonging suite of RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets.
30
+ - **Language(s) (NLP):** English
31
+ - **License:** Apache 2.0.
32
+ - **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
33
+
34
+ ### Model Sources
35
+
36
+ - **Repository:** https://github.com/allenai/open-instruct
37
+ - **Dataset:** Data used to train this model can be found at **TODO UPLOAD DATA**
38
+ - **Model Family:** The collection of related models can be found [here](https://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126f618).
39
+
40
+ ## Performance
41
+
42
+ | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
43
+ |-------------|-----|----|---------------|--------------|
44
+ | **Tulu-v2-7b** 🐪 | **7B** | **SFT** | **6.30** | **73.9** |
45
+ | **Tulu-v2-dpo-7b** 🐪 | **7B** | **DPO** | **6.29** | **85.1** |
46
+ | **Tulu-v2-13b** 🐪 | **13B** | **SFT** | **6.70** | **78.9** |
47
+ | **Tulu-v2-dpo-13b** 🐪 | **13B** | **DPO** | **7.00** | **89.5** |
48
+ | **Tulu-v2-70b** 🐪 | **70B** | **SFT** | **7.49** | **86.6** |
49
+ | **Tulu-v2-dpo-70b** 🐪 | **70B** | **DPO** | **7.89** | **95.1** |
50
+
51
+ ## Input Format
52
+
53
+ The model is trained to use the following format (note the newlines):
54
+ ```
55
+ <|user|>
56
+ Your message here!
57
+ <|assistant|>
58
+ ```
59
+
60
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
61
+ We have included a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) in the tokenizer implementing this template.
62
+
63
+ ## Intended uses & limitations
64
+
65
+ The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs.
66
+ We then further aligned the model with a [Jax DPO trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_dpo.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4.
67
+
68
+ ## Bias, Risks, and Limitations
69
+
70
+ The Tulu models have not been aligned to generate safe completions within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
71
+ It is also unknown what the size and composition of the corpus was used to train the base Llama 2 models, however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
72
+
73
+
74
+ ### Training hyperparameters
75
+
76
+ The following hyperparameters were used during DPO training:
77
+ - learning_rate: 5e-07
78
+ - total_train_batch_size: 32
79
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
80
+ - lr_scheduler_type: linear
81
+ - lr_scheduler_warmup_ratio: 0.1
82
+ - num_epochs: 3.0
83
+
84
+ ## Citation
85
+
86
+ If you find Tulu 2.5 is useful in your work, please cite it with:
87
+
88
+ ```
89
+ @misc{ivison2024unpacking,
90
+ title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}},
91
+ author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
92
+ year={2024},
93
+ archivePrefix={arXiv},
94
+ primaryClass={cs.CL}
95
+ }
96
+ ```