File size: 10,517 Bytes
f518f37
8f6549d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f518f37
7fd562b
3150038
7fd562b
23ffa37
cce2092
 
 
 
7fd562b
 
 
 
23ffa37
 
 
7fd562b
 
23ffa37
 
7fd562b
 
 
 
 
 
 
 
 
 
 
 
 
23ffa37
7fd562b
 
 
 
 
 
 
 
23ffa37
 
 
7fd562b
 
 
 
 
23ffa37
 
7fd562b
 
 
 
 
23ffa37
 
 
 
 
7fd562b
 
 
 
 
 
 
5d26db1
 
7fd562b
23ffa37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd562b
 
 
 
 
 
 
8f6549d
3150038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f6549d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
---
language: en
license: apache-2.0
library_name: transformers
model-index:
- name: digital-socrates-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 54.44
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allenai/digital-socrates-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 75.99
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allenai/digital-socrates-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 51.41
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allenai/digital-socrates-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 44.88
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allenai/digital-socrates-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 73.09
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allenai/digital-socrates-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 17.89
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=allenai/digital-socrates-7b
      name: Open LLM Leaderboard
---

This is the Digital Socrates 7B (DS-7B) model described in our paper: <b>Digital Socrates: Evaluating LLMs through explanation critiques</b> (ACL Anthology link: https://aclanthology.org/2024.acl-long.302, arXiv link: https://arxiv.org/abs/2311.09613). 

The recommended, better performing 13B model can be found at https://huggingface.co/allenai/digital-socrates-13b

The DS-7B model is a fine-tuned version of [Llama-2-7b-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat), please 
review its [guidelines](https://huggingface.co/meta-llama/Llama-2-7b-chat/blob/main/USE_POLICY.md) and 
[licensing](https://huggingface.co/meta-llama/Llama-2-7b-chat#model-details) before use.
  
  
  
# What is Digital Socrates?
Digital Socrates is an open-source, automatic explanation-critiquing model. It is useful for revealing insights about student 
models by examining their reasoning chains. The use of Digital Socrates allows for nuanced, interpretable automatic 
evaluation of explanations without expensive API calls or human annotations.

While LLMs can provide reasoned explanations along with their answers, the nature and
quality of those explanations are still poorly understood. In response, our goal is to define a detailed way of characterizing the 
explanation capabilities of modern models and to create a nuanced, interpretable explanation
evaluation tool that can generate such characterizations automatically.

Given a **question** (together with the multiple-choice options and gold answer),
```commandline
When Dennis operates his lawnmower, he notices the engine makes a lot of noise. He also notices that the engine gets very hot. Which best describes the heat and noise generated from the lawnmower? 
(A) a change in phase 
(B) thermal expansion 
(C) an increase in entropy 
(D) mechanical advantage 

Answer sheet: (C)
```
 as well as a student model explanation and answer,
```
1) The question states that the lawnmower engine makes a lot of noise.
2) The question states that the lawnmower engine gets very hot.
3) Noise and heat are both forms of energy.
4) The noise and heat generated from the lawnmower are a result of the conversion of energy from the fuel to mechanical energy.

Answer: (D)
```

Digital Socrates gives a **critique of the model-generated explanation** that provides localized feedback on the 
most significant flaw (if any) in the explanation, suggestions to address the identified flaw, as well as a numeric rating indicating the explanation quality:
```
The explanation states or suggests the following:
* Main flaw (standalone statement): "The noise and heat generated from the lawnmower are a result of the conversion of energy from the fuel to mechanical energy."
* Dimension: incorrect_information

Consider these points for revising the explanation:
* General: Remember that noise and heat are not forms of energy. They are byproducts of energy conversion.
* Specific: In this case, the noise and heat generated by the lawnmower are not a result of the conversion of energy from the fuel to mechanical energy. They are byproducts of the combustion process.

Explanation score: 2
```


Remarkably, despite being orders of magnitude smaller than GPT-4, our Digital Socrates models are 
capable of generating critiques close to GPT-4 critiques in terms of human rating and other 
quantitative measures (correlation of explanation scores given and error category matches). 
Through quantitative and qualitative analysis, we demonstrate how Digital Socrates is useful for 
revealing insights about student models by examining their reasoning chains.

We invite you to try out Digital Socrates for your own application!
    
    
    
# How to use Digital Socrates?
We provide a quick example of how you can try out Digital Socrates with just a few lines of code:

'DSCritiqueBank-V1' used below can be downloaded from our [dataset page](https://allenai.org/data/digital-socrates).
```
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
model_path = "allenai/digital-socrates-7b"
model = AutoModelForCausalLM.from_pretrained(model_path).to("cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Define input data
question = "When Dennis operates his lawnmower, he notices the engine makes a lot of noise. He also notices that the engine gets very hot. Which best describes the heat and noise generated from the lawnmower? (A) a change in phase (B) thermal expansion (C) an increase in entropy (D) mechanical advantage"
explanation = "1) The question states that the lawnmower engine makes a lot of noise.\n2) The question states that the lawnmower engine gets very hot.\n3) Noise and heat are both forms of energy.\n4) The noise and heat generated from the lawnmower are a result of the conversion of energy from the fuel to mechanical energy."
answerkey = "C"
predictedanswer = "D"

# construct prompt (Llama conventions)
with open("../DSCritiqueBank-V1/DSCB-prompts.json") as file:
    prompts = json.load(file)

system_prompt = prompts['digital_socrates_v1']['system']
user_prompt = prompts['digital_socrates_v1']['main'].replace("[[QUESTION]]", question).replace("[[EXPLANATION]]", explanation).replace("[[PREDICTEDANSWER]]", predictedanswer).replace("[[ANSWERKEY]]", answerkey)

full_prompt = f"[INST] <<SYS>>\n{system_prompt}\n<</SYS>{user_prompt} [/INST]\n\n"

# Run model
input_ids = tokenizer.encode(full_prompt, return_tensors="pt").to("cuda:0")
output = model.generate(input_ids, max_new_tokens=512, temperature=0)
res = tokenizer.batch_decode(output, skip_special_tokens=True)
```
Print the output:
```
>>> print(res[0].split("[/INST]")[-1])

The explanation states or suggests the following:
* Main flaw (standalone statement): "The noise and heat generated from the lawnmower are a result of the conversion of energy from the fuel to mechanical energy."
* Dimension: incorrect_information

Consider these points for revising the explanation:
* General: Remember that noise and heat are not forms of energy. They are byproducts of energy conversion.
* Specific: In this case, the noise and heat generated by the lawnmower are not a result of the conversion of energy from the fuel to mechanical energy. They are byproducts of the combustion process.

Explanation score: 2
```


    
# More details about Digital Socrates ...
For more details about Digital Socrates, please refer to our:
* 📄Paper: https://arxiv.org/abs/2311.09613
* 💻Dataset: https://allenai.org/data/digital-socrates


# Citation

```
@inproceedings{gu-etal-2024-digital,
    title = "Digital Socrates: Evaluating {LLM}s through Explanation Critiques",
    author = "Gu, Yuling  and
      Tafjord, Oyvind  and
      Clark, Peter",
    editor = "Ku, Lun-Wei  and
      Martins, Andre  and
      Srikumar, Vivek",
    booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.acl-long.302",
    pages = "5559--5586",
}
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_allenai__digital-socrates-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |52.95|
|AI2 Reasoning Challenge (25-Shot)|54.44|
|HellaSwag (10-Shot)              |75.99|
|MMLU (5-Shot)                    |51.41|
|TruthfulQA (0-shot)              |44.88|
|Winogrande (5-shot)              |73.09|
|GSM8k (5-shot)                   |17.89|