Safetensors
English
olmo2
amanrangapur commited on
Commit
a3346e8
·
verified ·
1 Parent(s): 87eecb7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -19,16 +19,16 @@ The core models released in this batch include the following:
19
 
20
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
21
  |------|--------|---------|-------------|-----------------|----------------|
22
- | [OLMo2-7B July 2024](https://huggingface.co/allenai/OLMo-7B-0724-hf) | 4 Trillion | 32 | 4096 | 32 | 4096 |
23
- | [OLMo2- 13B July 2024](https://huggingface.co/allenai/OLMo-1B-0724-hf) | 5 Trillion | 40 | 5120 | 42 | 4096 |
24
 
25
  ## Inference
26
 
27
  You can use OLMo with the standard HuggingFace transformers library:
28
  ```python
29
  from transformers import AutoModelForCausalLM, AutoTokenizer
30
- olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo2-13B-1124")
31
- tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo2-13B-1124")
32
  message = ["Language modeling is "]
33
  inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
34
  # optional verifying cuda
@@ -41,7 +41,7 @@ print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
41
 
42
  For faster performance, you can quantize the model using the following method:
43
  ```python
44
- AutoModelForCausalLM.from_pretrained("allenai/OLMo2-13B-1124",
45
  torch_dtype=torch.float16,
46
  load_in_8bit=True) # Requires bitsandbytes package
47
  ```
@@ -55,13 +55,13 @@ The naming convention is `stepXXX-tokensYYYB`.
55
 
56
  To load a specific model revision with HuggingFace, simply add the argument `revision`:
57
  ```bash
58
- olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo2-13B-1124", revision="step102500-tokens860B")
59
  ```
60
 
61
  Or, you can access all the revisions for the models via the following code snippet:
62
  ```python
63
  from huggingface_hub import list_repo_refs
64
- out = list_repo_refs("allenai/OLMo2-13B-1124")
65
  branches = [b.name for b in out.branches]
66
  ```
67
 
 
19
 
20
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
21
  |------|--------|---------|-------------|-----------------|----------------|
22
+ | [OLMo2-7B](https://huggingface.co/allenai/OLMo-1124-7B) | 4 Trillion | 32 | 4096 | 32 | 4096 |
23
+ | [OLMo2- 13B](https://huggingface.co/allenai/OLMo2-1124-13B) | 5 Trillion | 40 | 5120 | 42 | 4096 |
24
 
25
  ## Inference
26
 
27
  You can use OLMo with the standard HuggingFace transformers library:
28
  ```python
29
  from transformers import AutoModelForCausalLM, AutoTokenizer
30
+ olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-13B")
31
+ tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-2-1124-13B")
32
  message = ["Language modeling is "]
33
  inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
34
  # optional verifying cuda
 
41
 
42
  For faster performance, you can quantize the model using the following method:
43
  ```python
44
+ AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-13B",
45
  torch_dtype=torch.float16,
46
  load_in_8bit=True) # Requires bitsandbytes package
47
  ```
 
55
 
56
  To load a specific model revision with HuggingFace, simply add the argument `revision`:
57
  ```bash
58
+ olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-13B", revision="step102500-tokens860B")
59
  ```
60
 
61
  Or, you can access all the revisions for the models via the following code snippet:
62
  ```python
63
  from huggingface_hub import list_repo_refs
64
+ out = list_repo_refs("allenai/OLMo-2-1124-13B")
65
  branches = [b.name for b in out.branches]
66
  ```
67